• Title/Summary/Keyword: reinforcing effect

Search Result 901, Processing Time 0.029 seconds

Reinforcement Effect Comparison of Reinforced Clayey Soil with Various Geotextile (각종 지오텍스타일 보강재에 의한 보강점성토의 보강효과 비교)

  • 송성원;이재열;김유성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.121-128
    • /
    • 1999
  • Recently, research of reinforcement mechanism in a sense of soil mechanics has been under way by many researchers with developing various kinds of geoteutiles. But it must be consider that reinforcement effect largely depends on used geotextile even if it is used on same in-site condition. As a matter of fact it is not necessarily that reinforcement effect appears in all the case of reinforced soil construction. It means that appropriate geotextile coincided with the intention has to be selected and adequate examination is needed. In this study, reinforcement effect with various kinds of geotextiles are compared through a series of direct shear tests. Based on the test results, shear strength characteristics and reinforced effects are investigated quantitatively and qualitatively considering the confining stress, reinforcement characteristics and number of reinforcement.

  • PDF

Confining Effect of Mortar-filled Steel Pipe Splice

  • Kim, Hyong-Kee
    • Architectural research
    • /
    • v.10 no.2
    • /
    • pp.27-35
    • /
    • 2008
  • Because of several advantages of mortar-filled sleeve splice in reinforced concrete buildings, this method is being applied increasingly at construction sites and various methods of the splice have been developed in Korea and other countries. In order to apply this system in the field, studies on mortar-filled sleeve splice have been mainly experimental research focused on overall structural performance. However, for understanding the structural characteristics of this splice more accurately, we need to study the confining effect of sleeve, which is known to affect bond strength between filling mortar and reinforcing bar, the most important structural elements of the bar splice. Thus, in order to examine the confinement effect of mortar-filled steel pipe sleeve splice, the present study prepared actual-size specimens of steel pipe sleeve splice, and conducted a loading. Using the test results, we analyzed how the confining effect of steel pipe sleeve affects the bond strength of this splice and obtained data for developing more reasonable methods of designing the splice of reinforcement.

Effect of Natural Drugs on the Life Support of Starving Rats (기아를 일으킨 흰쥐의 생명연장에 미치는 천연약물의 효과)

  • 박시원;이현아
    • YAKHAK HOEJI
    • /
    • v.39 no.1
    • /
    • pp.14-23
    • /
    • 1995
  • The current study was undertaken to select the crude drug showing life prolonging effect on the starved rats(Sprague-Dawley) and elucidate the reaction mechanism there of. As distilled water extracts prepared from twenty kinds of natural drugs were administered orally to female starved rats, Bupleuri Radix demonstrated the most prominent effect with 34.6% increment in the survival time. To investigate underlying mechanism of life prolonging effect of Bupleuri Radix, the concentrations of adrenocorticosteroids(corticsterone, testosterone and aldosterone) and enzyme activities of superoxide dismutase(SOD), glutamate oxaloacetate transaminase(GOT), glutamate pyrurate transaminase(GPT) were assayed in the serums of rats starved for, 2, 4 and 6 days respectively. The results manifested much elevated values of corticosterone, aldosterone(2 days) and rather decreasing tendency afterwards, specially in the late periods of starvation(6 days). With respect to such a considerable changes according to starvation periods, Bupleur Radix restored these values much near to normal suggesting that Buplerum Radix may play a life prolonging action during starvation probably through reinforcing the homeostatic properties of corticosteroids and some enzyme activities.

  • PDF

Cracking Analysis of RC Tension Members Using Polynomial Strain Distribution Function (다항식 변형률 분포함수를 이용한 철근콘크리트 인장부재의 균열 해석)

  • 곽효경;송종영;김한수
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.69-84
    • /
    • 2002
  • In this papers, an analytical model which can simulate the post-cracking behavior and tension stiffening effect in a reinforced concrete(RC) tension member is proposed. Unlike the classical approaches using the bond stress-slip relationship or the assumed bond stress distribution, the tension stiffening effect at post-cracking stage is quantified on the basis of polynomial strain distribution functions of steel and concrete, and its contribution is implemented into the reinforcing steel. The introduced model can be effectively used in constructing the stress-strain curve of concrete at post-cracking stage, and the loads carried by concrete and reinforcing steel along the member axis can be directly evaluated on the basis of the introduced model. In advance, the prediction of cracking loads and elongations of reinforced steel using the introduced model shows good agreement with results from the previous analytical studies and experimental data.

Preparation and Characteristics of Cellulose Acetate Based Nanocomposites Reinforced with Cellulose Nanocrystals (CNCs) (셀룰로오스 나노크리스탈 강화 셀룰로오스 아세테이트 나노복합소재 제조 및 특성)

  • Gwon, Jae-Gyoung;Lee, Dan-Bee;Cho, Hye-Jung;Lee, Sun-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.5
    • /
    • pp.565-576
    • /
    • 2018
  • Cellulose acetate (CA) has been widely utilized for composite materials due to its high transparency and thermal resistance. In this study, CNCs (cellulose nanocrystals) were reinforced in CA nanocomposites for fortifying mechanical properties of the composites. In addition, CA nanocomposites reinforced with CNCs were manufactured by extrusion/injection processes applied with CNC-predispersion method for achieving a high dispersion level of CNCs in the CA matrix. According to the analysis of mechanical properties, the CA nanocomposite with 3 wt% CNCs has the highest tensile and flexural strengths due to the reinforcing effect of CNC nanoparticles. Thermogravimetric analysis (TGA) showed that the addition of acid hydrolyzed CNCs slightly lowered the initial pyrolysis temperature of CA nanocomposite.

Method of Quasi-Three Dimensional Stability Analysis of the Root Pile System on Slope Reinforcement (사면보강 뿌리말뚝공법의 준3차원적 안정해석기법)

  • Kim, Hong-Taek;Gang, In-Gyu;Park, Sa-Won
    • Geotechnical Engineering
    • /
    • v.13 no.5
    • /
    • pp.101-124
    • /
    • 1997
  • The root pile system is insitu soil reinforcement technique that uses a series of reticulately installed micropiles. In terms of mechanical improvement by means of grouted reinform ming elements, the root pile system is similar to the soil nailing system. The main difference between root piles and soil nailing are due to the fact that the reinforcing bars in root piles are normally grouted under high pressure and that the alignments of the reinforcing members differ. Recently, the root pile system has been broadly used to stabilize slopes and retain excavations. The accurate design of the root pile system is, however, a very difficult tass owing to geometric variety and statical indetermination, and to the difficulty in the soilfiles interaction analysis. As a result, moat of the current design methods have been heavily dependent on the experiences and approximate approach. This paper proposes a quasi-three dimensional method of analysis for the root pile system applied to the stabilization of slopes. The proposed methods of analysis include i) a technique to estimate the change in borehole radium as a function of the grout pressure as well as a function of the time when the grout pressure is applied, ii) a technique to evaluate quasi -three dimensional limit-equilibrium stability for sliding, iii) a technique to predict the stability with respect to plastic deformation of the soil between adjacent root piles, and iv) a quasi -three dimensional finite element technique to compute stresses and dis placements of the root pile structure barred on the generalized plane strain condition and composite unit cell concept talon형 with considerations of the group effect and knot effect. By using the proposed technique to estimate the change in borehole radius as a function of the grout pressure as well as a function of the time, the estimations are made and compar ed with the Kleyner 8l Krizek's experimental test results. Also by using the proposed quasi-three dimensional analytical method, analyses have been performed with the aim of pointing out the effects of various factors on the interaction behaviors of the root pile system.

  • PDF

Effect of Acupuncture$(HT_7)$ on Acute Cocaine-induced locomotor Activity and Fos-like Immunoreactivity in the Brain of the Rats (신문(神門) 침 자극이 급성 코카인 투여로 인한 보행성 활동량과 뇌내 c-Fos 발현에 미치는 효과)

  • Lee Bom-Bi;Yang Che-Ha;Lee Hak-In;Hahm Dae-Hyun;Lee Hae-Jeong;Shim In-Sup
    • Korean Journal of Acupuncture
    • /
    • v.19 no.1
    • /
    • pp.25-33
    • /
    • 2002
  • Substantial evidence suggests that behavioral and reinforcing effects of cocaine can be mediated by the mesolimbic dopaminergic system. Injections of cocaine can produce one of the immediate-early gene, c-fos expression in the brain and behavioral activation. Acupuncture as a therapeutic intervention is widely used for the treatment of many mental disorders such as drugs of abuse. In order to investigate whether acupuncture has an influence on cocaine-induced reinforcing and behavioral effects, we examined the effect of acupuncture on cocaine-induced locomotor activity and c-Fos expression in the nucleus accumbens and the striatum using Fos-like-immunoreactivity(FLI). Male SD rats received acupuncture for 1 min after injection of cocaine hydrochloride(1 mg/kg, i.v.). The employed acupuncture point, Shenmen$(HT_7)$, has been clinically used to treat mental and psychosomatic disorders. Injections of cocaine produced a marked increase in locomotor activity and FLI in the nucleus accumbens and the striatum. Acupuncture at $HT_7$, but not at control points($PC_6,\;TE_4$ or tail), significantly attenuated cocaine-induced increase in locomotor activity and Fos-like immunoreactivity. These results demonstrated that reduction in locomotor activity by acupuncture may be reflected by reduction of postsynaptic neuronal activity in the nucleus accumbens and the striatum. Our results suggest that acupuncture may have a therapeutic effect on cocaine addiction.

  • PDF

Implementation of Bond Slip Effect in Analysis of RC Beams Using Layerd Section Method (적층단면법에 의한 철근콘크리트 보 해석에서의 부착슬립효과)

  • Kim Jin-Kook;Kwak Hyo-Gyoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.1 s.71
    • /
    • pp.1-13
    • /
    • 2006
  • An analytical procedure to analyze reinforced concrete(RC) beams and columns subject to monotonic and cyclic loadings is proposed on the basis of the layered section method. In contrast to the classical nonlinear approaches adopting the perfect bond assumption, the bond slip effect along the reinforcing bar is quantified with the force equilibrium and compatibility condition at the post cracking stage and its contribution is implemented into the reinforcing. The advantage of the proposed analytical procedure, therefore, will be on the consideration of the bond slip effect while using the classical layered section method without additional consideration such as taking the double nodes. Through correlation studies between experimental data and analytical results, it Is verified that the proposed analytical procedure can effectively simulate the cracking behavior of RC beams and columns accompanying the stiffness degradation caused by the bond slip.

Effect of Fiber Type and Combination on the Reinforcement of Heat Polymerized Denture Base Resin (섬유의 종류와 조합이 열중합 의치상 레진의 강화에 미치는 영향)

  • Yu, Sang-Hui;Kim, Young-Im
    • Journal of dental hygiene science
    • /
    • v.10 no.6
    • /
    • pp.445-450
    • /
    • 2010
  • The aim of this study was to evaluate the effect according to the fiber type and combination on the reinforcement of heat-polymerized denture base resin. The heat-polymerized resin(Vertex RS, Dentimax, Netherlands) was used in this study. Glass fiber(GL; ER 270FW, Hankuk Fiber Glass, Korea), polyaromatic polyamide fiber(PA; aramid; Kevlar-49, Dupont, U.S.A.) and ultra high molecular weight polyethylene fiber(PE, polyethylene; P.E, Dong Yang Rope, Korea) were used to reinforce the denture base resin specimens. The final size of test specimen was $64mm{\times}10mm{\times}3.3mm$. The specimens of each group were stored in distilled water at $37^{\circ}C$ for 50 hours before measurement. The flexural strength and flexural modulus were measured by an universal testing machine(Z020, Zwick, Germany) at a crosshead speed of 5 mm/min in a three-point bending mode. In this study, all fibers showed reinforcing effects on denture base resin(p<0.05). In terms of flexural strength and flexural modulus, glass fiber 5.3 vol.% showed most effective reinforcing effect on heat polymerized denture base resin. For flexural modulus, PA/GL was the highest in denture base resin specimen for hybrid FRC using two combination (p<0.05). Glass fiber 5.3 vol.% and PA/GL are considered to be applied effectively in reinforcing the heat polymerized denture base resin.

Monitoring the Structural Behavior of Reinforced RC Slabs Using Optical Fiber-embedded CFRP Sheets (광섬유 매립 CFRP 시트를 활용한 RC 슬래브의 구조적 거동 모니터링 기술 개발)

  • Kim, Jaehwan;Jung, Kyu-San;Kim, Byeong-Cheol;Kim, Kun-Soo;Park, Ki-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.311-322
    • /
    • 2022
  • This study performed 4-point flexural tests of reinforced concrete to which was attached a distributed optical fiber sheet and carbon fiber reinforced polymer (CFRP) sheets in order to assess the effect of the CFRP sheets and the applicability of a BOTDR sensor simultaneously. To evaluate the reinforcing effect, various degrees of CFRP sheet attachment were manufactured, and to evaluate the sensing ability, strains obtained from a BOTDR sensor were compared with strains measured from electric resistance strain gauges that were attached to the concrete surface. From the results, the reinforcing effects were evidently different according to the attachment type of the CFRP sheets, and it was confirmed that the main influencing factor on the reinforcing effect was the type of attachment rather than the attachment area. The reinforced concrete structural behavior was visualized with strains measured from the BOTDR sensor as load increased, and it was identified that load was concentrated in the CFRP reinforced area. Strains from the BOTDR sensor were similar to those from the electric resistance strain gauge; thereby a BOTDR sensor can be effective in the analysis of structural behaviorsof massive infrastructure. Finally, the strain from a BOTDR sensor was high where CFRP sheet fall-off occurs, and it would therefore be efficient to track local damage locations of CFRP sheets by utilizing a BOTDR sensor.