Browse > Article
http://dx.doi.org/10.5658/WOOD.2018.46.5.565

Preparation and Characteristics of Cellulose Acetate Based Nanocomposites Reinforced with Cellulose Nanocrystals (CNCs)  

Gwon, Jae-Gyoung (National Forestry Research Institute, Forest Products Department, National Institute of Forest Science)
Lee, Dan-Bee (National Forestry Research Institute, Forest Products Department, National Institute of Forest Science)
Cho, Hye-Jung (National Forestry Research Institute, Forest Products Department, National Institute of Forest Science)
Lee, Sun-Young (National Forestry Research Institute, Forest Products Department, National Institute of Forest Science)
Publication Information
Journal of the Korean Wood Science and Technology / v.46, no.5, 2018 , pp. 565-576 More about this Journal
Abstract
Cellulose acetate (CA) has been widely utilized for composite materials due to its high transparency and thermal resistance. In this study, CNCs (cellulose nanocrystals) were reinforced in CA nanocomposites for fortifying mechanical properties of the composites. In addition, CA nanocomposites reinforced with CNCs were manufactured by extrusion/injection processes applied with CNC-predispersion method for achieving a high dispersion level of CNCs in the CA matrix. According to the analysis of mechanical properties, the CA nanocomposite with 3 wt% CNCs has the highest tensile and flexural strengths due to the reinforcing effect of CNC nanoparticles. Thermogravimetric analysis (TGA) showed that the addition of acid hydrolyzed CNCs slightly lowered the initial pyrolysis temperature of CA nanocomposite.
Keywords
cellulose nanocrystals; cellulose acetate; predispersion; percolation effect; thermogravimetric analysis;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Liu, C., Li, X., Liu, T., Liu, Z., Li, N., Zhang, Y., ... Feng, X. 2016. Microporous CA/PVDF membranes based on electrospun nanofibers with controlled crosslinking induced by solvent vapor. Journal of Membrane Science 512: 1-12.   DOI
2 Ljungberg, N., Cavaille, J. Y., Heux, L. 2006. Nanocomposites of isotactic polypropylene reinforced with rod-like cellulose whiskers. Polymer 47(18): 6285-6292.   DOI
3 Majoinen, J., Walther, A., McKee, J. R., Kontturi, E., Aseyev, V., Malho, J. M., Ikkala, O. 2011. Polyelectrolyte brushes grafted from cellulose nanocrystals using Cu-mediated surface-initiated controlled radical polymerization. Biomacromolecules 12(8): 2997-3006.   DOI
4 Masruchin, N., & Park, B. D., 2015. Manipulation of Surface Carboxyl Content on TEMPO-Oxidized Cellulose Fibrils. Journal of Korean Wood Science Technology 43(5): 613-627.   DOI
5 Moon, R. J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J. 2011. Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews 40(7): 3941-3994.   DOI
6 Park, C. W., Han, S. Y., Lee, S. H., 2016. Size fractionation of cellulose nanofibers by settling method and their morphology. Journal of Korean Wood Science Technology 44(3): 398-405.   DOI
7 Sukul, M., Min, Y. K., Lee, S. Y., Lee, B. T. 2015. Osteogenic potential of simvastatin loaded gelatin-nanofibrillar cellulose-${\beta}$ tricalcium phosphate hydrogel scaffold in critical-sized rat calvarial defect. European Polymer Journal 73: 308-323.   DOI
8 Candido, R. G., Godoy, G. G., Goncalves, A. R. 2017. Characterization and application of cellulose acetate synthesized from sugarcane bagasse. Carbohydrate polymers 167: 280-289.   DOI
9 Lee, P.W., Eom, Y.G., Chung, Y.J. 1988. The distribution and type of crystals in woods of Ginkgo Max. Journal of the Korean Wood Science and Technology 16(3): 1-4.
10 Azizi Samir, M. A. S., Alloin, F., Dufresne, A. 2005. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2): 612-626.   DOI
11 Chun, S. J., Choi, E. S., Lee, E. H., Kim, J. H., Lee, S. Y., Lee, S. Y. 2012. Eco-friendly cellulose nanofiber paper-derived separator membranes featuring tunable nanoporous network channels for lithium-ion batteries. Journal of Materials Chemistry 22(32): 16618-16626.   DOI
12 Claro, P. I. C., Neto, A. R. S., Bibbo, A. C. C., Mattoso, L. H. C., Bastos, M. S. R.,, Marconcini, J. M. 2016. Biodegradable blends with potential use in packaging: a comparison of PLA/chitosan and PLA/cellulose acetate films. Journal of Polymers and the Environment 24(4): 363-371.   DOI
13 Gwon, J. G., Cho, H. J., Chun, S. J., Lee, S., Wu, Q., Li, M. C., Lee, S. Y. 2016. Mechanical and thermal properties of toluene diisocyanate-modified cellulose nanocrystal nanocomposites using semi-crystalline poly (lactic acid) as a base matrix. RSC Advances 6(77): 73879-73886.   DOI
14 Dong, H., Strawhecker, K. E., Snyder, J. F., Orlicki, J. A., Reiner, R. S., Rudie, A. W. 2012. Cellulose nanocrystals as a reinforcing material for electrospun poly (methyl methacrylate) fibers: Formation, properties and nanomechanical characterization. Carbohydrate Polymers 87(4): 2488-2495.   DOI
15 Dufresne, A. 2008. Polysaccharide nano crystal reinforced nanocomposites. Canadian Journal of Chemistry 86(6): 484-494.   DOI
16 Dumitriu, C., Voicu, S. I., Muhulet, A., Nechifor, G., Popescu, S., Ungureanu, C., ... Pirvu, C. 2018. Production and characterization of cellulose acetate/titanium dioxide nanotubes membrane fraxiparinized through polydopamine for clinical applications. Carbohydrate polymers 181: 215-223.   DOI
17 Gutierrez, M. C., De Paoli, M. A., Felisberti, M. I. 2012. Biocomposites based on cellulose acetate and short curaua fibers: Effect of plasticizers and chemical treatments of the fibers. Composites Part A: Applied Science and Manufacturing 43(8): 1338-1346.   DOI
18 Gwon, J. G., Cho, H. J., Lee, D., Choi, D. H., Lee, S., Wu, Q., Lee, S. Y. 2018. Physicochemical and mechanical properties of polypropylene-cellulose nanocrystal nanocomposites: Effects of manufacturing process and chemical grafting. BioResources 13(1): 1619-1636.
19 Jo, Y. J., Cho, H. J., Chun, S. J., Lee, S. Y. 2015. Mechanical and thermal properties of hydroxypropyl cellulose/TEMPO-Oxidized cellulose nanofibril composite films. Journal of Korean Wood Science Technology 43(6): 740-745.   DOI
20 Gwon, J. G., Cho, H. J., Chun, S. J., Lee, S., Wu, Q., Lee, S. Y. 2016. Physiochemical, optical and mechanical properties of poly (lactic acid) nanocomposites filled with toluene diisocyanate grafted cellulose nanocrystals. RSC Advances 6(12): 9438-9445.   DOI
21 Korea Textile Development Instute, Textile information team. 2012. Development trend of thermoplastic cellulose fibers
22 Kurokawa, N., Kimura, S., Hotta, A. 2018. Mechanical properties of poly (butylene succinate) composites with aligned cellulose-acetate nanofibers. Journal of Applied Polymer Science 135(24): 45429.   DOI
23 Leite, L. S. F., Battirola, L. C., da Silva, L. C. E., Goncalves, M. D. C. 2016. Morphological investigation of cellulose acetate/cellulose nanocrystal composites obtained by melt extrusion. Journal of Applied Polymer Science 133(44).