• Title/Summary/Keyword: reinforcement details

검색결과 255건 처리시간 0.023초

삼각망 철근상세를 갖는 새로운 중공 철근콘크리트 교각단면: I. 개발 및 검증 (New Hollow RC Bridge Pier Sections with Triangular Reinforcement Details: I. Development and Verification)

  • 김태훈;이승훈;이재훈;신현목
    • 한국지진공학회논문집
    • /
    • 제19권3호
    • /
    • pp.109-120
    • /
    • 2015
  • The purpose of this study was to investigate the performance of new hollow reinforced concrete (RC) bridge pier sections with triangular reinforcement details. The proposed triangular reinforcement details are economically feasible and rational and facilitate shorter construction periods. A model of pier sections with triangular reinforcement details was tested under quasi-static monotonic loading. As a result, proposed triangular reinforcement details was equal to existing reinforcement details in terms of required performance. In the companion paper, the parametric study for the performance assessment of new hollow RC bridge pier sections with triangular reinforcement details is performed.

물량저감 철근상세를 갖는 중공 철근콘크리트 교각단면의 개발 (Development of Hollow Reinforced Concrete Bridge Column Sections with Reinforcement Details for Material Quantity Reduction)

  • 김태훈;이재훈;신현목
    • 한국지진공학회논문집
    • /
    • 제17권3호
    • /
    • pp.107-115
    • /
    • 2013
  • The purpose of this study was to investigate the performance of hollow reinforced concrete bridge column sections with reinforcement details for material quantity reduction. The proposed reinforcement details has have economic feasibility and rationality and makes construction periods shorter. A model of column sections with reinforcement details for material quantity reduction was tested under quasistatic monotonic loading. As a result, the proposed reinforcement details for material quantity reduction was were equal to existing reinforcement details in terms of the required performance. In the a subsequent paper, the an experimental and analytical study will be performed for the performance assessment of hollow reinforced concrete bridge column sections with reinforcement details for material quantity reduction will be performed.

물량저감 철근상세를 갖는 중공 철근콘크리트 교각 시스템: I. 개발 및 검증 (Hollow Reinforced Concrete Bridge Column Systems with Reinforcement Details for Material Quantity Reduction: I. Development and Verification)

  • 김태훈;이재훈;신현목
    • 한국지진공학회논문집
    • /
    • 제18권1호
    • /
    • pp.1-8
    • /
    • 2014
  • The purpose of this study was to investigate the performance of hollow reinforced concrete bridge column systems with reinforcement details for material quantity reduction. The proposed reinforcement details have economic feasibility and rationality and make construction periods shorter. A model of hollow reinforced concrete bridge columns was tested under a constant axial load and a quasi-static cyclically reversed horizontal load. As a result, proposed reinforcement details for material quantity reduction were equal to existing reinforcement details in terms of required performance. The companion paper presents the experimental and analytical study for the performance assessment of hollow reinforced concrete bridge column systems with reinforcement details for material quantity reduction.

비선형 지진해석을 통한 삼각망 철근상세를 갖는 중실 철근콘크리트 기둥의 성능평가 (Performance Assessment of Solid Reinforced Concrete Columns with Triangular Reinforcement Details Using Nonlinear Seismic Analysis)

  • 김태훈;나경웅;신현목
    • 한국지진공학회논문집
    • /
    • 제21권1호
    • /
    • pp.11-20
    • /
    • 2017
  • This study investigates the seismic performance of solid reinforced concrete columns with triangular reinforcement details using nonlinear seismic analysis. The developed reinforcement details are economically feasible and rational, and facilitate shorter construction periods. By using a sophisticated nonlinear finite element analysis program, the accuracy and objectivity of the assessment process can be enhanced. Solution of the equations of motion is obtained by numerical integration using Hilber-Hughes-Taylor (HHT) algorithm. The proposed numerical method gives a realistic prediction of seismic performance throughout the input ground motions for several column specimens. As a result, developed triangular reinforcement details were designed to be superior to the existing reinforcement details in terms of required performance.

물량저감 중공 철근콘크리트 교각의 설계프로그램과 경제성 평가 (Design Program and Economic Evaluation for Hollow RC Bridge Columns with Reinforcement Details for Material Quantity Reduction)

  • 김태훈;손윤기;양남석;이승훈
    • 한국전산구조공학회논문집
    • /
    • 제27권5호
    • /
    • pp.403-412
    • /
    • 2014
  • 이 연구에서는 물량저감 철근상세를 갖는 중공 철근콘크리트 교각 시스템의 전용 설계프로그램과 소성설계 적용 결과를 제시하였다. 개발된 물량저감 철근상세는 경제성과 합리성을 갖으며 공사기간의 단축을 가져올 수 있다. 물량저감 중공 철근콘크리트 교각의 적용을 통해 경제성 평가를 수행하였다. 평가 결과 개발상세가 기존상세에 비해 구조적 합리성, 시공성, 그리고 경제성 등이 우수함을 확인하였다.

삼각망 철근상세를 갖는 새로운 중공 철근콘크리트 교각 (New Hollow RC Bridge Piers with Triangular Reinforcement Details)

  • 김태훈;김호영;이재훈;신현목
    • 한국지진공학회논문집
    • /
    • 제20권1호
    • /
    • pp.21-31
    • /
    • 2016
  • This study investigates the seismic performance of new hollow reinforced concrete (RC) bridge piers with triangular reinforcement details. The developed triangular reinforcement details are economically feasible and rational, and facilitate shorter construction periods. We tested a model of new hollow RC bridge piers with triangular reinforcement details under a constant axial load and a quasi-static, cyclically reversed horizontal load. We used a computer program, Reinforced Concrete Analysis in Higher Evaluation System Technology (RCAHEST), for analysis of RC structures. The used numerical method gives a realistic prediction of seismic performance throughout the loading cycles for several hollow pier specimens investigated. As a result, developed triangular reinforcement details for material quantity reduction was equal to existing reinforcement details in terms of required performance.

삼각망 철근상세를 갖는 새로운 중공 철근콘크리트 교각단면: II. 매개변수 연구 (New Hollow RC Bridge Pier Sections with Triangular Reinforcement Details: II. Parametric Study)

  • 김태훈;김호영;손제국
    • 한국지진공학회논문집
    • /
    • 제19권3호
    • /
    • pp.121-132
    • /
    • 2015
  • The purpose of this study is to investigate the behavior characteristics of new hollow reinforced concrete (RC) bridge pier sections with triangular reinforcement details and to provide the details and reference data. Among the numerous parameters, this study concentrates on the shape of the section, the reinforcement details and the spacing of the transverse reinforcement. Additional eight column section specimens were tested under quasi-static monotonic loading. In this study, the computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), was used. A innovative confining effect model was adopted for new hollow bridge pier sections. This study documents the testing of new hollow RC bridge pier sections with triangular reinforcement details and presents conclusions based on the experimental and analytical findings.

Performance assessment of advanced hollow RC bridge column sections

  • Kim, T.H.;Kim, H.Y.;Lee, S.H.;Lee, J.H.;Shin, H.M.
    • Computers and Concrete
    • /
    • 제16권5호
    • /
    • pp.703-722
    • /
    • 2015
  • This study investigates the performance of advanced hollow reinforced concrete (RC) bridge column sections with triangular reinforcement details. Hollow column sections are based on economic considerations of cost savings associated with reduced material and design moments, as against increased construction complexity, and hence increased labor costs. The proposed innovative reinforcement details are economically feasible and rational, and facilitate shorter construction periods. We tested a model of advanced hollow column sections under quasi-static monotonic loading. The results showed that the proposed triangular reinforcement details were equal to the existing reinforcement details, in terms of the required performance. We used a computer program, Reinforced Concrete Analysis in Higher Evaluation System Technology (RCAHEST), for analysis of the RC structures; and adopted a modified lateral confining effect model for the advanced hollow bridge column sections. Our study documents the testing of hollow RC bridge column sections with innovative reinforcement details, and presents conclusions based on the experimental and analytical findings. Additional full-scale experimental research is needed to refine and confirm the design details, especially for the actual detailing employed in the field.

물량저감 중공 철근콘크리트 교각의 성능평가를 위한 비선형 지진해석 (Nonlinear Seismic Analysis for Performance Assessment of Hollow RC Bridge Columns with Reinforcement Details for Material Quantity Reduction)

  • 김태훈;이승훈
    • 한국지진공학회논문집
    • /
    • 제18권5호
    • /
    • pp.221-230
    • /
    • 2014
  • The purpose of this study is to investigate the seismic performance of hollow RC bridge columns with reinforcement details for material quantity reduction. The proposed reinforcement details provide economy, are rational and shorthen the construction periods. The accuracy and objectivity of the assessment process can be enhanced by using a sophisticated nonlinear finite element analysis program. Solution of the equations of motion is obtained by numerical integration using Hilber-Hughes-Taylor (HHT) algorithm. The adopted numerical method gives a realistic prediction of seismic performance throughout the input ground motions for several test specimens investigated. As a result, the proposed reinforcement details for material quantity reduction develop equal performance to that required for existing reinforcement details.

물량저감 철근상세를 갖는 중공 철근콘크리트 교각단면에 관한 매개변수 연구 (Parametric Study on Hollow Reinforced Concrete Bridge Column Sections with Reinforcement Details for Material Quantity Reduction)

  • 김태훈;김호영;이재훈;신현목
    • 한국지진공학회논문집
    • /
    • 제17권4호
    • /
    • pp.159-169
    • /
    • 2013
  • The purpose of this study is to investigate the inelastic behavior of hollow reinforced concrete bridge column sections with reinforcement details for material quantity reduction and to provide the details and reference data. Among the numerous parameters, this study concentrates on the shape of the section, the reinforcement details, the diameter of the transverse reinforcement and loading types. Eighteen column section specimens were tested under quasi-static monotonic loading. In this study, the computer program RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology) was used. A modified lateral confining effect model was adopted for the hollow bridge column sections. This study documents the testing of hollow reinforced concrete bridge column sections with reinforcement details for material quantity reduction and presents conclusions based on the experimental and analytical findings.