• 제목/요약/키워드: reinforced shear wall

검색결과 410건 처리시간 0.021초

Dynamic behaviour of stiffened and damaged coupled shear walls

  • Meftah, S.A.;Tounsi, A.;Adda-Bedia, E.A.
    • Computers and Concrete
    • /
    • 제3권5호
    • /
    • pp.285-299
    • /
    • 2006
  • The free vibration of stiffened and damaged coupled shear walls is investigated using the mixed finite element method. The anisotropic damage model is adopted to describe the damage extent of the reinforced concrete shear wall element. The internal energy of a locally damaged shear wall element is derived. Polynomial shape functions established by Kwan are used to present the component of displacements vector on each point within the wall element. The principle of virtual work is employed to deduce the stiffness matrix of a damaged shear wall element. The stiffened system is reinforced by an additional stiffening beam at some level of the structure. This induces additional axial forces, and thus reduces the bending moments in the walls and the lateral deflection, and increases the natural frequencies. The effects of the damage extent and the stiffening beam on the free vibration characteristics of the structure are studied. The optimal location of the stiffening beam for increasing as far as possible the first natural frequency of vibration is presented.

Experimental study on hybrid FRP-steel RC shear wall with replaceable dampers

  • Shiying Xiao;Mengfu Wang
    • Steel and Composite Structures
    • /
    • 제52권2호
    • /
    • pp.217-236
    • /
    • 2024
  • The objective of this paper was to discuss the seismic performance of hybrid FRP-steel reinforced concrete shear wall with replaceable friction dampers at the feet of the wall. The hysteretic characteristics of five wall specimens were studied by pseudo-static loading tests. The results showed that the damage of the specimens was concentrated on the friction dampers, and the energy consumption capacity was increased while making up for the defect of low ductility of FRP reinforced wall specimens. And the repairability of the wall after earthquake was improved. Finally, a calculation method of initial stiffness of shear wall with replaceable dampers was proposed.

Seismic behavior of T-shaped steel reinforced high strength concrete short-limb shear walls under low cyclic reversed loading

  • Chen, Zongping;Xu, Jinjun;Chen, Yuliang;Su, Yisheng
    • Structural Engineering and Mechanics
    • /
    • 제57권4호
    • /
    • pp.681-701
    • /
    • 2016
  • This paper presents an experimental study of six steel reinforced high strength concrete T-shaped short-limb shear walls configured with T-shaped steel truss under low cyclic reversed loading. Considering different categories of ratios of wall limb height to thickness, shear/span ratios, axial compression ratios and stirrup reinforcement ratios were selected to investigate the seismic behavior (strength, stiffness, energy dissipation capacity, ductility and deformation characteristics) of all the specimens. Two different failure modes were observed during the tests, including the flexural-shear failure for specimens with large shear/span ratio and the shear-diagonal compressive failure for specimens with small shear/span ratio. On the basis of requirement of Chinese seismic code, the deformation performance for all the specimens could not meet the level of 'three' fortification goals. Recommendations for improving the structural deformation capacity of T-shaped steel reinforced high strength concrete short-limb shear wall were proposed. Based on the experimental observations, the mechanical analysis models for concrete cracking strength and shear strength were derived using the equivalence principle and superposition theory, respectively. As a result, the proposed method in this paper was verified by the test results, and the experimental results agreed well with the proposed model.

Prediction of shear strength and drift capacity of corroded reinforced concrete structural shear walls

  • Yang, Zhihong;Li, Bing
    • Structural Engineering and Mechanics
    • /
    • 제83권2호
    • /
    • pp.245-257
    • /
    • 2022
  • As the main lateral load resisting system in high-rise reinforced concrete structures, the mechanical performance of shear wall has a significant impact on the structure, especially for high-rise buildings. Steel corrosion has been recognized as an important factor affecting the mechanical performance and durability of the reinforced concrete structures. To investigate the effect on the seismic behaviour of corroded reinforced concrete shear wall induced by corrosion, analytical investigations and simulations were done to observe the effect of corrosion on the ultimate seismic capacity and drift capacity of shear walls. To ensure the accuracy of the simulation software, several validations were made using both non-corroded and corroded reinforced concrete shear walls based on some test results in previous literature. Thereafter, a parametric study, including 200 FE models, was done to study the influence of some critical parameters on corroded structural shear walls with boundary element. These parameters include corrosion levels, axial force ratio, aspect ratio, and concrete compressive strength. The results obtained would then be used to propose equations to predict the seismic resistance and drift capacity of shear walls with various corrosion levels.

반복-횡력을 받는 조적벽 골조와 전단벽 골조의 내력 및 연성에 관한 실험적 연구 (Experimental Study of Strength and Ductility on Masonry Wall Frame and Shear Wall Frame Subjected to Cyclic Lateral Loading)

  • 이호;변상민;정환목;이택운
    • 한국공간구조학회논문집
    • /
    • 제13권2호
    • /
    • pp.83-91
    • /
    • 2013
  • The core aim of this dissertation is to empirically scrutinize a strength characteristic of beam-column frame subjected to the cyclic lateral load, a beam-column frame of un-reinforced masonry wall, and a shear wall frame. First and foremost, I embark upon making three prototypes vis-$\grave{a}$-vis this research. By conducting this process, I touch on an analysis of cyclic behavior and a damage characteristic of the beam-column frame, the beam-column frame of un-reinforced masonry wall, and the shear wall frame. What is more, through the previous procedure, the next part delves into the exact stress transfer path and the destructive mechanism to examine how much and how strong the beam-column frame of un-reinforced Masonry Wall does have a resistance capacity against earthquake in all the architecture constructed by the above-mentioned frame, as well as school buildings. In addition to the three prototypes, two more experimental models, a beam-column frame and shear wall frame, are used to compare with the beam-column frame of un-reinforced masonry wall. Lastly, the dissertation will suggest some solutions to improve the resistance capacity against earthquake regarding all constructions built with non bearing wall following having examining precisely all the analysis with regard to not only behavior properties and the damage mechanism of the beam-column frame and the beam-column frame of un-reinforced Masonry Wall but also the resistance capacity against earthquake of non bearing wall and school buildings.

Performance based evaluation of RC coupled shear wall system with steel coupling beam

  • Bengar, Habib Akbarzadeh;Aski, Roja Mohammadalipour
    • Steel and Composite Structures
    • /
    • 제20권2호
    • /
    • pp.337-355
    • /
    • 2016
  • Steel coupling beam in reinforced concrete (RC) coupled shear wall system is a proper substitute for deep concrete coupling beam. Previous studies have shown that RC coupled walls with steel or concrete coupling beam designed with strength-based design approach, may not guarantee a ductile behavior of a coupled shear wall system. Therefore, seismic performance evaluation of RC coupled shear wall with steel or concrete coupling beam designed based on a strength-based design approach is essential. In this paper first, buildings with 7, 14 and 21 stories containing RC coupled shear wall system with concrete and steel coupling beams were designed with strength-based design approach, then performance level of these buildings were evaluated under two spectrum; Design Basis Earthquake (DBE) and Maximum Considered Earthquake (MCE). The performance level of LS and CP of all buildings were satisfied under DBE and MCE respectively. In spite of the steel coupling beam, concrete coupling beam in RC coupled shear wall acts like a fuse under strong ground motion.

세장한 대각보강 연결보의 전단강도 예측식 (Shear Strength Equation for Slender Diagonally Reinforced Coupling Beam)

  • 한상환;강진욱;한찬희
    • 한국지진공학회논문집
    • /
    • 제20권6호
    • /
    • pp.361-368
    • /
    • 2016
  • Coupling beams serve as primary source of energy dissipation in coupled shear wall systems during large earthquakes. However, the overestimation of the shear strength of diagonally reinforced coupling beams may be adverse effect on the seismic performance of coupled shear wall systems. In order to force coupling beams to properly work during earthquakes, coupling beams should be designed with accurate shear strength equations. The objective of this study is to propose the accurate shear strength equation for slender diagonally reinforced coupling beams. For this purpose, experimental tests were conducted using three diagonally reinforced coupling specimens with different amount of transverse reinforcement under reversed cyclic loads to evaluate the hysteretic behavior of the specimens. The test results show that transverse reinforcement of slender diagonally reinforced coupling beam affects the maximum strength and drift ratio.

Experimental and numerical study on mechanical behavior of RC shear walls with precast steel-concrete composite module in nuclear power plant

  • Haitao Xu;Jinbin Xu;Zhanfa Dong;Zhixin Ding;Mingxin Bai;Xiaodong Du;Dayang Wang
    • Nuclear Engineering and Technology
    • /
    • 제56권6호
    • /
    • pp.2352-2366
    • /
    • 2024
  • Reinforced concrete (RC) shear walls with precast steel-concrete composite modular (PSCCM) are strongly recommended in the structural design of nuclear power plants due to the need for a large number of process pipeline crossings and industrial construction. However, the effect of the PSCCM on the mechanical behavior of the whole RC shear wall is still unknown and has received little attention. In this study, three 1:3 scaled specimens, one traditional shear wall specimen (TW) and two shear wall specimens with the PSCCM (PW1, PW2), were designed and investigated under cyclic loadings. The failure mode, hysteretic curve, energy dissipation, stiffness and strength degradations were then comparatively investigated to reveal the effect of the PSCCM. Furthermore, numerical models of the RC shear wall with different PSCCM distributions were analyzed. The results show that the shear wall with the PSCCM has comparable mechanical properties with the traditional shear wall, which can be further improved by adding reinforced concrete constraints on both sides of the shear wall. The accumulated energy dissipation of the PW2 is higher than that of the TW and PW1 by 98.7 % and 60.0 %. The failure of the shear wall with the PSCCM is mainly concentrated in the reinforced concrete wall below the PSCCM, while the PSCCM maintains an elastic working state as a whole. Shear walls with the PSCCM arranged in the high stress zone will have a higher load-bearing capacity and lateral stiffness, but will suffer a higher risk of failure. The PSCCM in the low stress zone is always in an elastic working state.

현장끼움벽으로 보강된 철근콘크리트 골조의 비선형 유한요소해석 (A Nonlinear Finite Element Analysis to Reinforced Concrete Frame Retrofitted with Cast-In Plate Infilled Shear Wall)

  • 한민기;이혜연;김선우;이갑원;최창식;윤현도
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.73-76
    • /
    • 2005
  • This paper discussed finite element method(FEM) models of the reinforced concrete frame retrofitted with cast-in plate infilled shear wall and analysed under constant axial and monotonic lateral load using ABAQUS. Detailed finite element models are created by studying the monotonic load response of the designed connection of reinforced concrete frame and cast-in plate infilled shear wall. The developed models account for the effect of material inelasticity, concrete cracking, geometric nonlinearity and bond-slip of steel, frame and infilled shear wall. In order to verify the proposed FEM, this study behaved analysis considered a diagonal reinforced steel. The analytical results compared with the experimental results.

  • PDF

현장타설 끼움 벽으로 보강된 비내진 상세를 갖는 철근콘크리트 골조의 내진거동 (Seismic Behavior of Non Ductile Reinforced Concrete Frame Retrofitted With Cast-In Place Infilled Shear Wall)

  • 이혜연;김선우;한병찬;윤현도;최창식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.453-456
    • /
    • 2004
  • RC frames built prior to the advent of the philosophy of ductile concrete is one type of existing construction susceptible to damage. Strengthening and stiffening of such frames has been accomplished by infilled frames with cast-in-place, reinforced concrete walls. Placement of CIP shear walls within strategic bays of a structure appears to be a logical and economical method to strengthen a reinforced concrete frame and to stiffen a building in order to reduce architectural and mechanical damage. This study investigates the seismic performance of cast-in place infilled shear wall within existing frames. The object of this study is to clarify the seismic capacity and characteristics in the hysteretic behavior of bare frame, CIP infilled shear wall and CIP infilled wall reinforced diagonal bars.

  • PDF