DOI QR코드

DOI QR Code

Experimental study on hybrid FRP-steel RC shear wall with replaceable dampers

  • Shiying Xiao (College of Civil Engineering, Hunan University) ;
  • Mengfu Wang (College of Civil Engineering, Hunan University)
  • Received : 2023.04.11
  • Accepted : 2024.07.16
  • Published : 2024.07.25

Abstract

The objective of this paper was to discuss the seismic performance of hybrid FRP-steel reinforced concrete shear wall with replaceable friction dampers at the feet of the wall. The hysteretic characteristics of five wall specimens were studied by pseudo-static loading tests. The results showed that the damage of the specimens was concentrated on the friction dampers, and the energy consumption capacity was increased while making up for the defect of low ductility of FRP reinforced wall specimens. And the repairability of the wall after earthquake was improved. Finally, a calculation method of initial stiffness of shear wall with replaceable dampers was proposed.

Keywords

Acknowledgement

The research described in this paper was financially supported by the National Natural Science Foundation of China (grants 52078203 and 51578225).

References

  1. Ahangarnazhad, B.H., Pourbaba, M. and Afkar, A. (2020), "Bond behavior between steel and Glass Fiber Reinforced Polymer (GFRP) bars and ultra high performance concrete reinforced by Multi-Walled Carbon Nanotube (MWCNT)", Steel Compos. Struct., 35(4), 463-474. https://doi.org/10.12989/scs.2020.35.4.463.
  2. Arafa, A., Farghaly, A.S. and Benmokrane, B. (2018a), "Evaluation of flexural and shear stiffness of concrete squat walls reinforced with glass fiber-reinforced polymer bars", ACI Struct. J., 115(1), 211-221. http://dx.doi.org/10.14359/51700987.
  3. Arafa, A., Farghaly, A.S. and Benmokrane, B. (2018b), "Experimental behavior of GFRP-reinforced concrete squat walls subjected to simulated earthquake load", J. Compos. Constr., 22(2), 04018003. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000836.
  4. Arafa, A., Farghaly, A.S. and Benmokrane, B. (2018c), "Effect of web reinforcement on the seismic response of concrete squat walls reinforced with glass-FRP bars", Eng. Struct., 174, 712-723. https://doi.org/10.1016/j.engstruct.2018.07.092.
  5. Arafa, A., Farghaly, A.S. and Benmokrane, B. (2018d), "Prediction of flexural and shear strength of concrete squat walls reinforced with GFRP bars", J. Compos. Constr., 22(4), 06018001. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000854.
  6. Bohl, A. and Adebar, P. (2011), "Plastic hinge lengths in high rise concrete shear walls", ACI Struct. J., 108(2), 148-157. https://dx.doi.org/10.14288/1.0063296.
  7. Cavallaro, G.F., Francavilla, A., Latour, M., Piluso, V. and Rizzano G. (2016), "Experimental behaviour of innovative thermal spray coating materials for FREEDAM joints", Compos. Part B-Eng., 115(APR.), 289-299. https://doi.org/10.1016/j.compositesb.2016.09.075.
  8. Chen, C., Lu, X.L. and Xiao, R.J. (2018), "Study on the shear wall structure with combined form of replaceable devices", Adv. Struct. Eng., 21(9), 1327-1348. https://doi.org/10.7712/120117.5698.16958.
  9. Colajanni, P., La Mendola, L., Monaco, A. and Pagnotta, S. (2020), "Dissipative connections of RC frames with prefabricated steel-trussed-concrete beams", Ing. Sismica-Ital., 37(1), 51-63.
  10. Colajanni, P., La Mendola, L., Monaco, A. and Pagnotta, S. (2021), "Design of RC joints equipped with hybrid trussed beams and friction dampers", Eng. Struct., 227, 111442. https://doi.org/10.1016/j.engstruct.2020.111442
  11. Dang, B., Li, T., Wang, S.L. and Zhan, M. (2022), "Design method and engineering application of shear wall with friction energy dissipation damper", Gradevinar, 74(04), 277-289. https://doi.org/10.14256/JCE.2742.2019.
  12. Fahmy, M., Ahmed, S. and Wu, Z. (2021), "Bar surface treatment effect on the bond-slip behavior and mechanism of basalt FRP bars embedded in concrete", Constr. Build. Mater., 289(9), 122844. https://doi.org/10.1016/j.conbuildmat.2021.122844.
  13. FEMA P-58 (2012), Seismic Performance Assessment of Buildings, Redwood City, CA.
  14. Fitzgerlad, T.F., Anagnos, T., Goodson, M. and Zsutty, T. (1989), "Slotted bolted connections in a seismic design of concentrically braced connections", Earthq. Spectra, 5(2), 383-391. https://doi.org/10.1193/1.1585528.
  15. GB50010-2010 (2015), Code for Design of Concrete Structures, Ministry of Housing and Urban-Rural Development of the People's Republic of China; Beijing, China. (in Chinese).
  16. GB50011-2010 (2010), Code for Seismic Design of Buildings, Ministry of Housing and Urban-Rural Development of the People's Republic of China; Beijing, China. (in Chinese).
  17. GB/T228.1-2021 (2021), Metallic Materials - Tensile testing - Part 1: Method of Test at Room Temperature, Ministry of Housing and Urban-Rural Development of the People's Republic of China; Beijing, China. (in Chinese).
  18. Ghazizadeh, S., Cruz-Noguez, C.A. and Talaei, F. (2018a), "Analytical model for hybrid FRP-steel reinforced shear walls", Eng. Struct., 156, 556-566. https://doi.org/10.1016/j.engstruct.2017.11.060.
  19. Ghazizadeh, S. and Cruz-Noguez, C.A. (2018b), "Damage-resistant reinforced concrete low-rise walls with hybrid GFRPsteel reinforcement and steel fibers", J. Compos. Constr., 22(2), 04018002. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000834.
  20. Ghazizadeh, S., Cruz-Noguez, C.A. and Li, Y. (2019), "Numerical study of hybrid GFRP-steel reinforced concrete shear walls and SFRC walls", Eng. Struct., 180, 700-712. https://doi.org/10.1016/j.engstruct.2018.11.080.
  21. Ghorbani, H.R. and Rofooei, F.R. (2020), "A novel double slip loads friction damper to control the seismic response of structures", Eng. Struct., 225, 111273. https://doi.org/10.1016/j.engstruct.2020.111273.
  22. Grigorian, C.E. (1994), "Slotted bolted connections for energy dissipators", Ph.D. Dissertation, College of Engineering University of California, Berkeley.
  23. Hassanein, A., Mohamed, N., Farghaly, A.S. and Benmokrane, B. (2019a), "Experimental investigation: New ductility-based force modification factor recommended for concrete shear walls reinforced with glass fiber-reinforced polymer bars", ACI Struct. J., 116(1), 213-224. http://dx.doi.org/10.14359/51710867.
  24. Hassanein, A., Mohamed, N., Farghaly, A.S. and Benmokrane, B. (2019b), "Modeling of hysteretic response for concrete shear walls reinforced with glass fiber-reinforced polymer bars", ACI Struct. J., 116(6), 17-29. http://dx.doi.org/10.14359/51716798.
  25. Hassanein, A., Mohamed, N., Farghaly, A.S. and Benmokrane, B. (2019c), "Effect of boundary element confinement configuration on the performance of GFRP-Reinforced concrete shear walls", Eng. Struct., 225, 111262. https://doi.org/10.1016/j.engstruct.2020.111262.
  26. Hosseini, S.M., Yekrangnia, M. and Oskouei, A.V. (2022), "Effect of spiral transverse bars on structural behavior of concrete shear walls reinforced with GFRP bars", J. Build. Eng., 55, 104706. https://doi.org/10.1016/j.jobe.2022.104706.
  27. Hoult, R. (2022), "Universal plastic hinge length for reinforced concrete walls", ACI Struct. J., 119(4), 75-83. https://doi.org/10.14359/51734650.
  28. JGJ/T101-2015 (2015), Specification for Seismic Test of Buildings, Ministry of Housing and Urban-Rural Development of the People's Republic of China; Beijing, China. (in Chinese).
  29. Latour, M., Piluso, V. and Rizzano, G. (2014), "Experimental analysis on friction materials for supplemental damping devices", Constr. Build. Mater., 65, 159-176. https://doi.org/10.1016/j.conbuildmat.2014.04.092.
  30. Liu, Q.Z. and Jiang, H.J. (2017), "Experimental study on a new type of earthquake resilient shear wall", Earthq. Eng. Struct. D., 46(14), 2479-2497. https://doi.org/10.1002/eqe.2914.
  31. Lu, X.L., Mao, Y.J., Chen, Y., Liu, J.J. and Zhou, Y. (2013), "New structural system for earthquake resilient design", J. Earthq. Tsunami, 7(3), 80-616. https://doi.org/10.1142/S1793431113500139.
  32. Mohamed, N., Farghaly, A.S., Benmokrane, B. and Neale, K.W. (2014a), "Experimental investigation of concrete shear walls reinforced with glass fiber-reinforced bars under lateral cyclic loading", J. Compos. Constr., 18(3), A4014001. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000393.
  33. Mohamed, N., Farghaly, A.S., Benmokrane, B. and Neale, K.W. (2014b), "Numerical simulation of mid-rise concrete shear walls reinforced with GFRP bars subjected to lateral displacement reversals", Eng. Struct., 73, 62-71. https://doi.org/10.1016/j.engstruct.2014.04.050.
  34. Mohamed, N., Farghaly, A.S., Benmokrane, B. and Neale, K.W. (2014c), "Drift capacity design of shear walls reinforced with glass fiber-reinforced polymer bars", ACI Struct. J., 111(6), 1397. http://dx.doi.org/10.14359/51687099.
  35. Mohamed, N., Farghaly, A.S. and Benmokrane, B. (2015), "Aspects of deformability of concrete shear walls reinforced with glass fiber-reinforced bars", J. Compos. Constr., 19(5), 06014001. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000529.
  36. Pall, A.S. and Marsh, C. (1982), "Response of friction damped braced frames", J. Struct. Div., 108(6), 1313-1323. https://doi.org/10.1061/JSDEAG.0005968.
  37. Park, R. and Paulay, T. (1975), Reinforced Concrete Structures, John Wiley & Sons, New York, NY, USA.
  38. Park, R. (1988), "Ductility evaluation from laboratory and analytical testing", Proceedings of the 9th World Conference on Earthquake Engineering, Tokyo-Kyoto, Japan, August.
  39. Paulay, T. and Priestley, M.J.N. (1992), Seismic Design of Reinforced Concrete and Masonry Buildings, John Wiley & Sons, New York, NY, USA.
  40. Sasani, M. and Kiureghian, A.D. (2001), "Seismic fragility of RC structural walls: displacement approach", J. Struct. Eng., 127(2), 219-228. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:2(219).
  41. Song, L.L., Guo, T. and Chen, C. (2014), "Experimental and numerical study of a self-centering prestressed concrete moment resisting frame connection with bolted web friction devices", Earthq. Eng. Struct. D., 43(4), 529-545. https://doi.org/10.1002/eqe.2358.
  42. Wang, W., Quan, C., Li Y, Zhen, G.K. and Zhao, H.T. (2022a), "Experimental study and numerical simulation analysis on seismic performance of corrugated steel-plate shear wall with replaceable bottom corner dampers", Soil Dyn. Earthq. Eng., 152, 107061. https://doi.org/10.1016/j.soildyn.2021.107061.
  43. Wang, W., Quan, C., Su, S., Li, Y. and Song, H. (2022b), "Evaluation of seismic performance and effective lateral stiffness for corrugated steel-plate concrete composite structural walls repaired using bottom corner dampers", Structures, 40, 1-17. https://doi.org/10.1016/j.istruc.2022.04.004.
  44. Wang, M.F. and Zhu, X.F. (2020), "Experimental study on seismic performance of high damping ECC and CFRP bars reinforced concrete shear wall with concealed bracing", Earthq. Eng. Eng. Vib., 40(5),11. (in Chinese). https://doi.org/10.13197/j.eeev.2020.05.24.wangmf.003.
  45. Xiao, S.J., Xu, L.H. and Li, Z.X. (2020a), "Design and experimental verification of disc spring devices in self-centering reinforced concrete shear walls", Struct. Control Hlth., 27(7), 1545-2255. https://doi.org/10.1002/stc.2549.
  46. Xiao, S.J., Xu, L.H. and Li, Z.X. (2020b), "Development and experimental verification of self-centering shear walls with disc spring devices", Eng. Struct., 213(4), 110622. https://doi.org/10.1016/j.engstruct.2020.110622.
  47. Xiao, S.J., Xu, L.H. and Li, Z.X. (2018), "Hysteretic behavior and parametric studies of a self-centering RC wall with disc spring devices", Soil Dyn. Earthq. Eng., 115, 476-488. https://doi.org/10.1016/j.soildyn.2018.09.017.
  48. Xiao, S.J., Xu, L.H. and Li, Z.X. (2021), "Experimental investigation on the seismic behavior of a new self-centering shear wall with additional friction", J. Struct. Eng., 147(5), 04021056. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003024.
  49. Young, C.K. and Jong, W.H. (2022), "Pilot study for investigating behavior of recentering frame connection equipped with friction damper", Steel Compos. Struct., 44(4), 569-586. https://doi.org/10.12989/scs.2022.44.4.569.
  50. Zhang, Y. and Xu, L.H. (2022a), "Cyclic response of a self-centering RC wall with tension-compression-coupled disc spring devices", Eng. Struct., 250, 113404. https://doi.org/10.1016/j.engstruct.2021.113404.
  51. Zhang, Y. and Xu, L.H. (2022b), "Cyclic loading tests of a resilient hinged self-centering RC wall", Eng. Struct., 270, 114920. https://doi.org/10.1016/j.engstruct.2022.114920.
  52. Zhao, Q., Zhao, J., Dang, J.T., Chen, J.W. and Shen, F.Q. (2019), "Experimental investigation of shear walls using carbon fiber reinforced polymer bars under cyclic lateral loading", Eng. Struct., 191, 82-91. https://doi.org/10.1016/j.engstruct.2019.04.052.
  53. Zhao, J., Shen, F.Q., Si, C.Z., Sun, Y.P. and Yin, L. (2020), "Experimental investigation on seismic resistance of RC shear walls with CFRP bars in boundary elements", Int. J. Concr. Struct. M., 14, 1-20. https://doi.org/10.1186/s40069-019-0377-5.
  54. Zhuang, L.D. (2021), "Research on mechanical behavior and design method of eccentrically braced composite frame with vertical shear links", Ph.D. Dissertation, Tsinghua University, Beijing. (in Chinese).