• 제목/요약/키워드: reinforced matrix

검색결과 1,143건 처리시간 0.025초

무윤활 미끄럼 마찰하에서 SiC 휘스커 및 입자강화 청동기지 복합재의 마모특성 (The Dry Sliding Wear Properties of $SiC_w$ and $SiC_p$ Reinforced Bronze Matrix Composites)

  • 이상로;허무영
    • Tribology and Lubricants
    • /
    • 제9권2호
    • /
    • pp.49-55
    • /
    • 1993
  • The dry sliding wear properties of the sintered Cu-10 wt%Sn bronze alloys reinforced with $SiC_w$ and $SiC_p$ were investigated by a pin-on-disc wear testing machine. The worn surfaces and the cross sections of the wear specimens and the wear debris were observed by SEM to study the effect of the variation of the ceramic phase contents in the composite and the wear condition on the wear behaviors. The wear of bronze matrix was dominated by the adhesive wear. The transition from mild to severe wear was found in the bronze matrix specimens at the applied load higher than 20N where the surface delamination caused the severe wear. The addition of $SiC_w$ and $SiC_p$ reinforcements in the romposites was proved to reduce the wear rate by the matrix strengthening at the applied load higher than 20N. SiC whiskers having a large length to diameter ratio which hold the deformed matrix were effective to hinder the crack propagation near the worn surface. Thus the maximum wear resistance was obtained in the composite reinforced by $SiC_w$ at the higher applied load.

액상가압공정으로 제조된 탄탈륨 연속섬유 강화 비정질 복합재료의 미세조직과 기계적 성질 (Microstructure and Mechanical Properties of Tantalum-Continuous-Fiber-Reinforced Amorphous Matrix Composites Fabricated by Liquid Pressing Process)

  • 이규홍;이상복;이상관;이성확
    • 대한금속재료학회지
    • /
    • 제46권7호
    • /
    • pp.403-411
    • /
    • 2008
  • Zr-based amorphous alloy matrix composites reinforced with tantalum continuous fibers were fabricated by liquid pressing process, and their microstructures and mechanical properties were investigated. About 60 vol.% of tantalum fibers were homogeneously distributed inside the amorphous matrix, which contained a small amount of polygonal crystalline particles. The ductility of the tantalum-continuous-fiber-reinforced composite under tensile or compressive loading was dramatically improved over that of the monolithic amorphous alloy, while maintaining high strength. The consequential observation of the tensile deformation and fracture behavior of the composite showed the formation of multiple shear bands and multiple necking, crack deflection in the amorphous matrix, and obstruction of crack propagation by ductile fibers, thereby resulting in very high tensile elongation of 7.2%. These findings suggested that the liquid pressing process was useful for the development of amorphous matrix composites with improved ductility.

Flexural behavior of reinforced concrete beams strengthened with a hybrid inorganic matrix - steel fiber retrofit system

  • Papakonstantinou, Christos G.;Katakalos, Konstantinos
    • Structural Engineering and Mechanics
    • /
    • 제31권5호
    • /
    • pp.567-585
    • /
    • 2009
  • The aim of this study was to investigate the flexural behavior of reinforced concrete beams strengthened with a novel strengthening system. Concrete beams were strengthened with a hybrid retrofit system consisting of high strength steel cords impregnated in an inorganic fireproof matrix (Geopolymer). The strengthened reinforced concrete beams along with non-strengthened control beams were tested monotonically under four point bending loading conditions. Moreover, an analytical model is introduced, that can be used to analyze the flexural performance of the strengthened beams. The experimental results indicate that the failure of the strengthened beams was based on the yielding of the reinforcement in the tension face of the beams, followed by a local slippage of the steel cords. The flexural stiffness of the strengthened beams was significantly improved compared to the stiffness of the non-strengthened beams. In conclusion, the strengthening system can provide an effective alternative to commercially available systems.

Deflection and stress behaviour of multi-walled carbon nanotube reinforced laminated composite beams

  • Lal, Achchhe;Markad, Kanif
    • Computers and Concrete
    • /
    • 제22권6호
    • /
    • pp.501-514
    • /
    • 2018
  • The paper presents the thermo-mechanically induced non-linear response of multiwall carbon nanotube reinforced laminated composite beam (MWCNTRCB) supported by elastic foundation using higher order shear deformation theory and von-Karman non-linear kinematics. The elastic properties of MWCNT reinforced composites are evaluated using Halpin-Tsai model by considering MWCNT reinforced polymer matrix as new matrix by dispersing in it and then reinforced with E-glass fiber in an orthotropic manner. The laminated beam is supported by Pasternak elastic foundation with Winkler cubic nonlinearity. A generalized static analysis is formulated using finite element method (FEM) through principle of minimum potential energy approach.

용탕교반법에 의한 SiC 입자강화 Mg기 복합재료의 기계적 특성 (Mechanical Properties of SiC Particulate Reinforced Mg Matrix Composites Fabricated by Melt Stirring Method)

  • 임석원;장융랑;박용진
    • 한국주조공학회지
    • /
    • 제13권5호
    • /
    • pp.441-449
    • /
    • 1993
  • SiC particulate reinforced magnesium matrix composites were fabricated by melt stirring method. The effet of several factors on mechanical properties and the efficiency of melt stirring method from the viewpoint of these properties were investigated. The tensile strength increased and the elongation decreased with decrease of the particle size or the increase of the paticulate volume fraction for pure magnesium matrix and Mg-5%Zn alloy matrix composites. A longer stirring time improved the tensile strength of these composites. The tensile strength of Mg-5%Ca alloy matrix composites which shows no uniform paticulate distribution was a little lower than that of matrix alloy. Rapid solidification rate is preferred for the improved tensile strength of these composites. The pure magnesium matrix and Mg-5%Zn alloy matrix composites have tensile strength of about 400MPa. This value agrees with the tensile strength of some magnesium matrix composites fabricated by liquid infiltration method or powder metallurgy method at the same volume fraction of reinforcements of whisker or particle. Therefore, the melt stirring method which has the advantages of simple process is considered to be efficient in fabricating magnesium matrix composites.

  • PDF

SiCp입자강화 Al 복합재료의 내열 및 마모특성 (Heat and Wear Resistance Characterization of SiCp Reinforced Al Matrix Composites)

  • 김석원;김완기;우기도;안행근
    • 한국주조공학회지
    • /
    • 제20권6호
    • /
    • pp.377-385
    • /
    • 2000
  • Al matrix composites as the most promising MMCs can be expected to be excellent engineering materials in the nearest future. So as to improve material properties of composite, many manufacturing processes have been developed. Among them, squeeze casting process which offers fine microstructure and near-net-shape is one of the most successful MMCs manufacturing processes. But, in case of with subsieve size particles (under 44 ${\mu}m$), it is very difficult to homogeneously distribute particles in matrix of Al matrix composite by various casting processes, including squeeze casting used so far. Duplex process which was developed in previous study was used to distribute the particle of subsieve size more homogeneously in matrix of Al matrix composite. Microstructures, wear and heat resistance characterization of Al-Si-Cu-Mg-(Ni)/SiCp manufactured by duplex process were examined to clarify the effect of manufacturing conditions, particle size of reinforcement and alloying elements. Al matrix composites reinforced with SiCp(10 ${\mu}m$) have the lowest wear amount among composites reinforced with 3 ${\mu}m$, 5 ${\mu}m$ and 10 ${\mu}m$ SiCp. The wear amount of Al matrix composites with 10 wt.% SiCp(3, 5, 10 ${\mu}m$) was decreased according to the increase of the sliding speed because abrasive wear takes place at high sliding speed of 4m/s and worn debris with block type occurs at low sliding speed of 1m/s. As for heat resistance, it is made clear that remarkable heat resistance property can be obtained by addition of Ni element in Al matrix composites.

  • PDF

A Study on the Preparation of the Eco-friendly Carbon Fibers-Reinforced Composites

  • Choi, Kyeong-Eun;Seo, Min-Kang
    • Carbon letters
    • /
    • 제14권1호
    • /
    • pp.58-61
    • /
    • 2013
  • In this work, the effect of catalysts on the mechanical properties of carbon fibers-reinforced epoxy matrix composites cured by cationic latent thermal catalysts, i.e., N-benzylpyrazinium hexafluoroantimonate (BPH) was studied. Differential scanning calorimetry was executed for thermal characterization of the epoxy matrix system. Mechanical interfacial properties of the composites were studied by interlaminar shear strength (ILSS), critical stress intensity factor ($K_{IC}$), and specific fracture energy ($G_{IC}$). As a result, the conversion of neat epoxy matrix cured by BPH was higher than that of one cured by diaminodiphenyl methane (DDM). The ILSS, $K_{IC}$, $G_{IC}$, and impact strength of the composites cured by BPH were also superior to those of the composites cured by DDM. This was probably the consequence of the effect of the substituted benzene group of BPH catalyst, resulting in an increase in the cross-link density and structural stability of the composites studied.

촙트 스트랜드 강화 ALS계 복합재료의 파괴인성 평가 (Evaluation on The Fracture Toughness of Chopped Strand Reinforced ALS Matrix Composites)

  • 차용훈;김덕중;이연신;성백섭;채경수
    • 한국안전학회지
    • /
    • 제13권1호
    • /
    • pp.13-18
    • /
    • 1998
  • It is well known in the fracture mechanics community that the fracture toughness of brittle materials, such as ceramics, can be improved improves significantly when fibers are added into the material. This is because in presence of fibers the cracks cannot propagate as freely as it can in absence of them. Fibers bridge the gap between two adjacent surfaces of the crack and reduce the crack tip opening displacement, thus make it harder to propagate. Several investigators have experimentally studied how the length, diameter and volume fraction of fibers affect the fracture toughness of chopped strand reinforced matrix composite materials. In this paper, matrix used ALS, Arizona Lunar Simulant, types of fiber used carbon steels and stainless steels. To analyze quantitatively fiber reinforced ALS composites, experimental and analytical methods was progressed. Load-displacement curve is used to experimental method, and FEM analysis program using ABAQUS is used analytical method.

  • PDF

마이카 강화 실리콘 복합재료의 제작과 그 유전적 특성에 관한 연구 (A Study on the Dielectric Properties of Mica-reinforced Silicone Composites)

  • 조정수;곽영순;김순태;박차수;박정후
    • 대한전기학회논문지
    • /
    • 제41권6호
    • /
    • pp.640-651
    • /
    • 1992
  • This paper describes the electric properties of mica reinforced silicone composites with the parameter of curing condition of silicone resin, application amount of silane coupling agent to the mica paper and the mica wt% to the composite. Heat-resistant silicone resin and mica paper made of mica flakes are used to prepared the mica/silicone composite as matrix and filler, respectively. To improve the dielectric properties and interfacial adhesion between matrix and filler, silane coupling agent is applied on the mica paper. As for matrix, tan$\delta$ value of 30$0^{\circ}C$ heat-treated silicone resin is the lowest under 1%. The optimal wt% of coupling agent is 0.3% to the weight of mica paper. 80 wt% of mica as filler to the mica/silicone composite shows the best electric properties. And the mica reinforced silicone composite shows good high-frequency and mechanical tensile stress properties.

  • PDF

알루미나 단섬유 및 유리섬유 보강 청동기지 복합재의 마모특성 연구 (Tribological Properties of the Aluminum Short fiber and glass fiber Reinforced Tin-Bronze Matrix Composites)

  • 황순홍;안병길;이범주;최웅수;허무영
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1996년도 제24회 춘계학술대회
    • /
    • pp.13-19
    • /
    • 1996
  • The tribological properties of the aluminum short fiber and glass fiber reinforced tin-bronze matrix composites manufactured by vacuum hot pressing was studied. The effect of the composition and the relative density on the wear properties was examined by a reciprocal type tribo-test machine. The results were discussed by the observation of the microstructure of sintered specimen and worn surface observation using SEM and EDS. Addition of the fibers led to the wear resistance since the metal matrix was reinforced by the fibers. The reinforcement of the fiber seemed to be stronger as the distribution of the fibers was more uniform. Graphite also reduce the wear loss. The pores in the sintered composites seemed to play an important role to improve the wear resistance since the pores provide the places where the solid lubricants locate.

  • PDF