• Title/Summary/Keyword: reinforced matrix

Search Result 1,149, Processing Time 0.025 seconds

Al-10wt%Ti-4wt%F Alloys as In-situ Composites through Rapid Solidification(II) (급냉응고법에 의한 In-Situ 복합재료로서의 Al-10wt%Ti-4wt%Fe 합금 (II))

  • Kim, Hye-Seong;Jeong, Jae-Pil;Gwon, Suk-In;Geum, Dong-Hwa
    • Korean Journal of Materials Research
    • /
    • v.8 no.12
    • /
    • pp.1127-1132
    • /
    • 1998
  • The possibilities of producing Al-10%Ti-4%Fe composites through in-situ processing and thus achieving mechanical property improvements over binary Al-10%Ti to a level or higher exhibited by PM SiC/A12124 composites were explored in this study. The microstructure of in-situ processed Al-10%Ti-4%Fe composites was similar to that of Al matrix composites reinforced with discontinuous SiC particulates(SiC/A12124) and significant enhancements in elastic modulus, tensile strength and wear resistance were observed as compared to Al-10%Ti alloy. These results can be attributed to the in-situ formed Al. Fe by third element addition, leading to additional dispersion strengthening effect over $Al_3Ti$ phase reinforcement in Al-Ti system.

  • PDF

Mechanical and Impact Properties and Heat Deflection Temperature of Wood Flour-reinforced Recycled Polyethylene Green Composites (목분강화 재활용폴리에틸렌 그린복합재료의 기계적 특성, 충격 특성 및 열변형온도)

  • Lee, Ki-Young;Cho, Dong-Hwan
    • Elastomers and Composites
    • /
    • v.46 no.3
    • /
    • pp.223-230
    • /
    • 2011
  • Considering of utilizing renewable resources and recycled plastics, green composites consisted of recycled polyethylene (PE) as matrix and eco-friendly natural fibers as reinforcement were processed and characterized in the present study. First, the wood flour/recycled polyethylene pellets with different wood flour contents were prepared by twin-screw extrusion processing. Using the pellets, wood flour/recycled polyethylene green composites were fabricated and the effects of wood flour loading on their flexural, tensile, impact properties, heat deflection temperature and fracture behavior were investigated. It was concluded that the flexural strength, flexural modulus, tensile modulus and heat deflection temperature of wood flour/recycled polyethylene green composites were increased with wood flour, whereas the tensile strength and impact strength were decreased. The fracture behavior observed by means of scanning electron microscopy supported qualitatively the tendency of the impact strength with wood flour loading, compared with the ductile fracture pattern of recycled polyethylene.

Enhanced Technique for Fiber Detection of ECC Sectional Image (ECC 화상 단면의 향상된 섬유 검출 기법)

  • Lee, Bang-Yeon;Kim, Yun-Yong;Kim, Jeong-Su;Lee, Yun;Kim, Jin-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1009-1012
    • /
    • 2008
  • The fiber dispersion performance in fiber-reinforced cementitious composites is a crucial factor with respect to achieving desired mechanical performance. However, evaluation of the fiber dispersion performance in the composite PVA-ECC(Polyvinyl alcohol-Engineered Cementitious Composite) is extremely challenging because of the low contrast of PVA fibers with the cement-based matrix. In the present work, an enhanced fiber detection technique is developed and demonstrated. Using a fluorescence technique on the PVA-ECC, PVA fibers are observed as green dots in the cross-section of the composite. After capturing the fluorescence image with a Charged Couple Device(CCD) camera through a microscope. The fibers are more accurately detected by employing a series of process based on a categorization, watershed segmentation, and morphological reconstruction.

  • PDF

A Study on the Fabrication and Mechanical Properties Evaluation of Natural Fiber Composites added Eco-friendly Materials (친환경 소재를 첨가한 천연섬유 복합재의 제조 및 기계적 물성 평가 연구)

  • Kim, Jae-Cheol;Lee, Dong-Woo;Prabhakar, M.N.;Song, Jung-Il
    • Composites Research
    • /
    • v.33 no.4
    • /
    • pp.213-219
    • /
    • 2020
  • Recently, global facing environmental issues have been raised caused by plastic waste. Hence, increasing the demand for interest in environmentally friendly materials. In this row, research on engineering composite materials also replacing the synthetic reinforcement by introducing natural fibers. However, focus on the strength and interfacial adhesion between matrix and reinforcement is very essential in natural fiber composite, which is insufficient in the literature. There are number of approaches for improving the mechanical strength of the composites, one of the common methods is to reinforce additive nanoparticles. The present investigation, bio-additives were synthesized utilizing bio-waste, cheap, bio-degradable sea-weed powder that could replace expensive nanomaterials and reinforced into the CFRP composite through Hand lay-up followed by a vacuum process. Mechanical properties were evaluated and analyzed through microanalysis. The results concluded that synthesized additives are effective for improving mechanical properties such as tensile, flexural, impact, and shear strength. Overall, the results confirmed that the fabricated composites have potential applications in the field of engineering applications.

Effect of Volume Fraction on Mechanical and Fatigue Crack Growth Properties of SiC Particle Reinforced AL Alloy Composites (체적비가 $SiC_{p}$/AL 복합재료의 기계적 및 피로균열진전 특성에 미치는 영향)

  • Gwon, Jae-Do;An, Jeong-Ju;Mun, Yun-Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1301-1308
    • /
    • 1996
  • In order to save the energy and protect the environment, it were studied about ecomaterials with the developed countries as central figure. In the Metal Matrix Composites(MMCs), this trends appeared the development of the MMCs which had excellent mechanical properties in spite of the low volume fraction of reinforcement. Therefore, in this study, fatigue crack growth test, tensile and hardness test were conducted in order to investigate the mechanical and fatigue properties of 5 %, and 10 % $SiC_{p}$/Al composites. As the results, in the tensile and hardness test, tensile strength and hardness increased but fatigue crack growth rate decreased with $SiC_{p}$/Al volume fraction. And in the view of fatigue failured surface through the SEM, fatigue crack initiated around the SiC particle and in low $\Delta{K}$ regions, fatigue creck detoured the SiC particle but crack propagated through the SiC particle in the high $\DeltaK$ regions.

Effects of Molding Condition on Surface Unevenness of GFRP Composites in Compression Molding (GFRP 복합재료의 압축성형에서 표면요철에 미치는 성형조건의 영향)

  • Kim, Hyoung-Seok;Kim, Jin-Woo;Kim, Yong-Jae;Lee, Dong-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1649-1657
    • /
    • 2010
  • We have investigated the unexpected phenomena on the surface of molded GFRP composites. The major cause of the unevenness, as a result of which the surface becomes rough, is a shrinking of the matrix in the process of holding pressure and cooling temperature. The higher holding pressure load in a molding process and the lower demolding temperature in an annealing experiment, the better GFRP composites moldings improved its appearance. In addition, by taking the holding pressure and demolding temperature into consideration, we evaluate the process that causes the surface unevenness and the variation in the fiber projection height.

Influence of Silane Coupling Agents on the Interlaminar and Thermal Properties of Woven Glass Fabric/Nylon 6 Composites

  • Donghwan Cho;Yun, Suk-Hyang;Kim, Junkyung;Soonho Lim;Park, Min;Lee, Sang-Soo;Lee, Geon--Woong
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.119-126
    • /
    • 2004
  • In this study, the influence of silane coupling agents, featuring different organo-functional groups on the interlaminar and thermal properties of woven glass fabric-reinforced nylon 6 composites, has been by means of short-beam shear tests, dynamic mechanical analysis, scanning electron microscopy, and thermogravimetric analysis. The results indicate that the fiber-matrix interfacial characteristics obtained using the different analytical methods agree well with each other. The interlaminar shear strengths (ILSS) of glass fabric/nylon 6 composites sized with various silane coupling agents are significantly improved in comparison with that of the composite sized commercially. ILSS of the composites increases in the order: Z-6076 with chloropropyl groups in the silanes > Z-6030 with methacrylate groups> Z-6020 with diamine groups; this trend is similar to that of results found in an earlier study of interfacial shear strength. The dynamic mechanical properties, the fracture surface observations, and the thermal stability also support the interfacial results. The improvement of the interfacial properties may be ascribed to the different chemical reactivities of the reactive amino end groups of nylon 6 and the organo-functional groups located at the ends of the silane chains, which results from the increased chemical reactivity in order chloropropyl > methacrylate > diamine.

Thermal Stability of Furfuryl Alcohol/Graphite Powder Mixtures for Impregnation of Carbonaceous Composite (탄화복합재료 함침을 위한 퍼퓨릴알콜/흑연분말 혼합물의 열안정성)

  • An, Yeong-Seok;Jo, Dong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.8 no.4
    • /
    • pp.299-303
    • /
    • 1998
  • We examined, using thermoanalytical methods, the effects of $2000^{\circ}C$ heat-treated graphite powders and heating rate of cure after impregnation on the thermal stability and carbon yield of furfuryl alcohol, which is frequently used not only as an impregnant but also as a matrix precursor for carbon fiber-reinforced carbon composites. It was founded that the addition of 30wt% graphite powders to furfuryl alcohol and the heating rate of $35^{\circ}C$/min showed the highest thermal stability of furfuryl alcohol/graphite powder mixture. The carbon yield above $1000^{\circ}C$ was enhanced more than 10% in comparison with the absence of graphite powders. It would be expected that this result can contribute to some extent to reduce the repeating number of processing cycle (carbonization-impregnation-cure-re-carbonization) required to densify a carbonaceous composite.

  • PDF

Electrical and Mechanical Properties of Carbon Particle Reinforced Rubber for Electro-Active Polymer Electrode (전기활성 고분자 전극용 탄소입자 강화고무의 전기적 및 기계적 특성)

  • Lee, Jun Man;Ryu, Sang Ryeoul;Lee, Dong Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1465-1471
    • /
    • 2013
  • The electrical and mechanical properties of room temperature vulcanized (RTV) silicone rubber composites are investigated as functions of multi-walled carbon nanotube (CNT), carbon black (CB), and thinner content. The thinner is used to improve the CNT and CB dispersion in the matrix. The electrical and mechanical properties of the composite with CNT are improved when compared to the composite with CB at the same content. As the thinner content is 80 phr, the electric resistance of the composite decreases significantly with the CNT content and shows contact point saturation of CNT at 2.5 phr. As the thinner content increases, the dispersion of conductive particles improves; however, the critical CB content increases because of the reduction in the CB weight ratio. It is believed that an electrode that needs good flexibility and excellent electrical properties can be manufactured when the amount of CNT and CB are increased with the thinner content.

Effects of NaCl Concentration and Solution Temperature on the Galvanic Corrosion Between CFRP and A516Gr.55 Carbon Steel

  • Hur, Seung Young;Kim, Ki Tae;Kim, Young Sik
    • Corrosion Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.129-137
    • /
    • 2019
  • CFRP (Carbon Fiber Reinforced Plastics) is composed of carbon fiber and plastic resin, and is approximately 20 - 50% lighter than metallic materials. CFRP has a low density, higher specific stiffness, specific strength, and high corrosion resistance. Because of these excellent properties, which meet various regulation conditions needed in the industrial fields, CFRP has been widely used in many industries including aviation and ship building. However, CFRP reveals water absorption in water immersion or high humidity environments, and water absorption occurs in an epoxy not carbon fiber, and can be facilitated by higher temperature. Since these properties can induce volume expansion inside CFRP and change the internal stress state and degrade the chemical bond between the fiber and the matrix, the mechanical properties including bond strength may be lowered. This study focused on the effects of NaCl concentration (0.01 - 1% NaCl) and solution temperature ($30-75^{\circ}C$) on the galvanic corrosion between CFRP and A516Gr.55 carbon steel. When NaCl concentration increases 10 times, corrosion rate of a specimen was not affected, but that of galvanic coupled carbon steel increased by 46.9% average. However, when solution temperature increases $10^{\circ}C$, average corrosion rate increased approximately 22%, regardless of single or galvanic coupled specimen.