• Title/Summary/Keyword: reinforced ground behavior

Search Result 228, Processing Time 0.023 seconds

Behavior of Variable Cross-Section Soft Ground Reinforced Foundation in Soft Grounds (연약지반에 적용된 변단면 연약지반보강기초의 거동분석)

  • Kim, Khi-Woong;Kim, Dong-Wook;Jo, Myoung-Su
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.4
    • /
    • pp.89-96
    • /
    • 2016
  • Compressive axial behavior of the variable cross-section soft ground reinforced foundation is investigated from the field load test results at ${\bigcirc}{\bigcirc}$ construction site in Incheon city. Variable cross-section soft ground reinforced foundation is a type of partial-displacement pile formed by mixing bidding material with in situ soils to obtain a rigid and strong variable cross-section column in a relatively soft ground. The foundations are usually constructed as a group; however in this study, only single foundation was installed and tested under compressive axial load on foundation head. For the comparison of the variable cross-section soft ground reinforced foundation axial behavior, behavior of typical Pretensioned spun high strength concrete (PHC) pile constructed on a relatively soft ground near the surface was analyzed. It was concluded that variable cross-section soft ground reinforced foundation efficiently resists against axial load with sufficient stiffness and strength within a considerable range of axial load magnitude.

Evaluation of the Low Replacement Reinforced Ground Using Laboratory Tests (실내시험을 이용한 저치환 보강지반의 평가)

  • Bae, Woo-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.131-137
    • /
    • 2008
  • SCP(Sand Compaction Pile) method that forms a composite ground by driving compacted sand piles into the soft ground. This method is one of the soil improvement techniques for reinforcing and strengthening soft ground deposits. This thesis describes the investigation on the behavior of soft ground reinforced with SCP by low improvement ratio. Direct shear test and consolidation test carried out to verified behavior of composite ground reinforced with SCP. Test results were discussed with reference to the amount of consolidation settlement, variation of shear resistance with area replacement ratio and effect of the stress concentration. And, laboratory model loading test carried out to verified the effect of the location and failure mode of reinforced embankment. Residual shear strength varies with the area replacement and constrict load in the low replacement ratio. Calculated stress concentration ratio overestimate than proposed valve by experimental, theoretical and analytical method. As regards the location, improving right below of the top of the slope was more effective than below of the toe of the slope. This thesis carried out to obtain fundamental information of behavior of the composit ground. Hereafter, centrifuge test that reproduce stress state of the in-situ must be necessary through the further study about pile penetration, reinforce position and construct time.

Behavior of Underground Flexible Pipe According to Ground Characteristics (지반특성에 따른 지중 연성관의 거동특성)

  • Chang, Yongchai;Kim, Yonghyu;Lee, Seungeun;Park, Kichul;No, Jinsuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.4
    • /
    • pp.41-48
    • /
    • 2009
  • A flexible pipe was buried 10cm below the ground formed with standard sand to observe changes in the shape of the pipe according to the behavior of ground at each relative density. Changes in the shape of the pipe in each ground were observed to examine the behavior of the pipe under the state of reinforced ground after installing geogrid under the pipe. Ground reinforced using geogrid formed tensile force on the reinforcement material with increase in the vertical load and showed reduction in settlement under identical vertical load with existence of reinforcement. Distributions of ground deformation of 100% relative density and 70% relative density had clear difference. Reinforced ground with 70% density converged to the ground reaction of final settlement of non-reinforced ground with 100% density at final settlement of 100 mm. Because the shape of lower part strain of the buried pipe is similar to that of un-reinforced ground with relative density of 100%, reinforcement effect by geogrid in soft ground can be anticipated.

  • PDF

The behavior of high-speed rail roadbed reinforced by geogrid under cyclic loading (지오그리드로 보강한 고속철도 노반의 동적 거동)

  • 신은철;김두환;김종인
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.415-422
    • /
    • 1999
  • The general concept of reinforced roadbed in the high-speed railway is to cope with the soft ground for the bearing capacity and settlement of foundation soil. The cyclic plate load tests were performed to determine the behavior of reinforced ground with multiple layers of geogrid underlying by soft soil. Five series of test were conducted with varying the soil profile conditions including the ground level, type of soil, and the thickness of each soil layer. Based on these plate load tests, laboratory model tests under cyclic loading were conducted to know the effect of geogrid reinforcement in particular for the high-speed rail roadbed. The permanent settlement and the behavior of earth pressure in reinforced roadbed subjected to a combination of static and dynamic loading are presented.

  • PDF

Analysis of the Behavior of Reinforced Earth Retaining Walls Constructed on Soft Ground Using the Replacement Method (치환공법을 적용한 연약지반에 시공된 보강토옹벽의 거동해석)

  • Ki, Wan-Seo;Joo, Seung-Wan;Kim, Sun-Hak
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.601-613
    • /
    • 2007
  • It is reported that factors affecting the behavior of reinforced earth retaining walls built on soft ground are not only basic physical properties but also the increase of load by the reinforced earth retaining walls, consolidation period, pore water pressure, etc. This study analyzed the behavior of reinforced earth retaining walls and soft ground using SAGE CRISP, a ground analysis program. First, we examined the effect of the replacement method, which was to prevent the excessive displacement of reinforced earth retaining walls, in improving the behavior of the walls. Second, we compared and analyzed how the behavior of ground is affected by the vertical interval of stiffeners on the back of reinforced earth retaining walls after the application of the replacement method. Lastly, we proposed the optimal replacement width and depth in the application of the replacement method. The results of this study proved that the replacement method is considerably effective in improving the behavior of reinforced earth retaining walls. In addition, the vertical interval of stiffeners on the back of reinforced earth retaining walls appeared effective in improving the horizontal displacement of the top of retaining walls but not much effective in improving the vertical displacement of the back of retaining walls. In addition, improvement in horizontal-vertical displacement resulting from the increase in replacement width was not significant and this suggests that the increase of replacement width is not necessary. With regard to an adequate replacement depth, we proposed the ratio of replacement depth to the height of retaining walls(D/H) according to the ratio of the thickness of the soft layer to the height of retaining walls(H/T).

Behavior Analysis from the Site Monitoring Results of Geotextile Reinforced Wall (지오텍스타일 보강토벽의 계측결과에 의한 거동분석)

  • 원명수;이재열;김유성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.145-152
    • /
    • 1999
  • In the applying of the reinforced soil method, it would be possible to obtain reinforcement effect more than before in terms of economic if high water content clayey soils could be used as embanking material. Futhermore it would be possible to expect the expansion of the applying field of reinforced soil method too. In this study, the authors describe the analysis results on the behavior of 5 meter high walls reinforced with nonwoven geotextile having the permeability and woven geotextile or geogrid having large tensile strength on the soil ground. The behavior of the walls were investigated for about 100 days after construction and the deformations of reinforcements, lateral soil pressures, vertical and horizontal displacements of the walls were examined by automatical measuring system. It was found that this kinds of reinforcing system might effectively improve the performance of the steep walls by virtue of the reciprocal action between soil and reinforcements, and it might be concluded that construction of the clayey reinforced soil walls with three kinds of geotextiles could be done successfully even on the comparative weak ground.

  • PDF

Rebar corrosion effects on structural behavior of buildings

  • Yuksel, Isa
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1111-1133
    • /
    • 2015
  • Rebar corrosion in concrete is one of the main causes of reduction of service life of reinforced concrete buildings. This paper presents the influence of rebar corrosion on the structural behavior of reinforced concrete (RC) buildings subjected to strong earthquake ground motion. Different levels of rebar corrosion scenarios were applied on a typical four story RC frame. The deteriorated conditions as a result of these scenarios include loss in cross-sectional area and loss of mechanical properties of the reinforcement bars, loss in bond strength, and loss in concrete strength and its modulus of elasticity. Dynamic analyses of the frame with different corrosion scenarios are performed with selected strong earthquake ground motion records. The influences of degradation in both concrete and reinforcement on structural behavior are investigated by comparing the various parameters of the frame under different corrosion scenarios with respect to each other. The results show that the progressive deterioration of the frame due to rebar corrosion causes serious structural behavior changes such as change in failure mode. The intensity, propagation time, and extensity of rebar corrosion have very important effects on the level of degradation of steel and concrete, as well as on the earthquake behavior of the structure.

Behavior of High-Speed Rail Roadbed Reinforced by Geogrid under Cyclic Loading (지오그리드로 보강한 고속철도 노반의 거동 특성)

  • 신은철;김두환
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.2
    • /
    • pp.84-91
    • /
    • 2000
  • The general concept of reinforced roadbed in the high-speed railway is to cope with the soft ground for the bearing capacity and settlement of foundation soil. The cyclic plate load tests were performed to determine the behavior of reinforced ground with multiple layers of geogrid underlying by soft soil. With the test results, the bearing capacity ratio, elastic rebound ratio, subgrade modulus and the strain of geogrids under loading were investigated. Based on these plate load tests, laboratory model tests under cyclic loading were conducted to estimate the effect of geogrid reinforcement in particular for the high-speed rail roadbed. The permanent settlement and the behavior of earth pressure in reinforced roadbed subjected to a combination of static and dynamic loading are presented.

  • PDF

A Study on the Geogrid Reinforced Stone Column System for Settlement Reduction Effect (침하저감효과를 위한 고강도 지오그리드 보강Stone Column 공법에 관한 연구)

  • Park, Si-Sam;Lee, Hoon-Hyun;Yoo, Chung-Sik;Lee, Dae-Young;Lee, Boo-Rak
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.838-845
    • /
    • 2006
  • Recently construction work in Korea, demands of favorable condition ground had been increased with industrialization acceleration and economic growth. However, because of limited land space, it was so hard to ensure favorable condition grounds that construction work proceeds until soft ground area on plans of road, railroad and industrial complex. In this case, soft ground improvement was required such as a stone column method. Stone column method, making a compaction pile using crushed stone, is a soft ground improvement method. However, stone column method is difficult to apply to the ground which is not mobilized enough lateral confine pressure because no bulging failure resistance. Hence, in present study, evaluates the stone columns reinforced by geogrid for settlement reduction and wide range of application of stone columns. Triaxial compression tests were conducted for evaluation which is about behavior characteristics of stone column on replacement rate. Then, 3-dimensional numerical analysis were conducted for application of stone column reinforced by geogrid as evaluate behavior characteristics and settlement reduction effect of stone column reinforced by geogrid on reinforcing depth change of geogrid.

  • PDF

Behavior of Geogrid-Reinforced Soil with Cyclic plate Load Test (반복 평판재하시험을 통한 지오그리드 보강지반의 거동 특성)

  • 신은철;김두환;이상조;이규진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.285-292
    • /
    • 1999
  • The cyclic plate load test were peformed to determine the behavior of reinforced soft ground with multiple layers of geogrid. Five series of test were conducted with varying the soil profile conditions which including the ground level, type of soil, and the thickness of each soil layer. The plate load test equipment was slightly modified to apply the cyclic load. Based on the cyclic plate load test results, the bearing capacity ratio(BCR), subbase modules, shear modules, the elastic rebound ratio, and reinforcing parameters are presented.

  • PDF