• Title/Summary/Keyword: reinforced earth retaining walls

Search Result 69, Processing Time 0.025 seconds

Analysis of Behaviour of Earth Retaining Structure using Cement-mixing Method (교반혼합체로 보강된 흙막이 벽체의 거동 분석)

  • Kim, Young-Seok;Cho, Yong-Sang;Kang, In-Cheol;Kim, In-Sup
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1294-1300
    • /
    • 2009
  • Recently, excavations in highly congest urban area have been increased. For the excavations conducted in extremely narrow spaces, we have been developing a novel soil reinforcement system of temporary retaining walls by using deep cement mixing method. The developing method installs largerdiameter ($\Phi$=300~500mm) and shorter reinforcement blocks than previous reinforcement system for mobilizing friction with soils, therefore it has advantages of not only shortening the length of reinforcement system but also reducing the amount of reinforcement. In this study, we performed a numerical analysis of the new reinforcement system by using a commercial finite element program, and evaluated the behavior of the reinforced retaining wall system under various conditions of the length, the diameter, the spacing, and the angle of the reinforcement system.

  • PDF

Analysis on the behavior of Stiffened Reinforcement within Reinforced earth retaining wall (보강토 옹벽 축조시 사용되는 보강재의 강성이 시공완료후 보강토 옹벽 구조체의 거동에 미치는 영향)

  • 박병영;유충식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.06a
    • /
    • pp.1-11
    • /
    • 2001
  • This Paper presents the result of a parametric study on the behavior of stiffened grid reinforced segmental wall resting on non-yielding foundation. The parametric study was conducted using the nonlinear finite element analysis. In the finite element analysis, the step by step construction of the wall such as backfill, block reinforcement, block/backfill and soil/reinforcement interfaces were carefully modeled. The mechanical behavior of stiffened grid reinforced segmental walls was then investigated based on the result of analysis with emphasis on the effect of reinforcement stiffness on the behavior of the wall. The results of analysis indicate that the horizontal wall displacement decrease; with increasing the reinforcement stiffness at a decreasing rate, and that the horizontal stress at the back of the reinforced soil block does not much vary with the reinforcement stiffness. It is also revealed that the calculated maximum vertical stress at the base of the reinforced soil block agrees well with that based on the Meyerhof distribution and that the reinforcement and the connection force are considerably smaller than what might be expected based on the current design assumptions. The implications of the findings from this study to current design approaches were discussed in detail.

  • PDF

Application of Weathered Granite Soils as Backfill Material of Reinforced Earth Structure (보강토구조물 뒤채움 재료로서 화장풍화토의 적용성)

  • 김상규;이은수
    • Geotechnical Engineering
    • /
    • v.12 no.1
    • /
    • pp.63-72
    • /
    • 1996
  • The current practice in construction of reinforced earth retaining walls is to use a granular soil for the backfill material. When the material is available in site, the construetion cost can be remarkably reduced. As the weathered granite soils are abundant and widely distributed throughout the Korean peninsula: whether they are suitable or not as the backfill material is considered to be the most important key in economic construction of the wall. This paper investigates the grain size distribution of the weathered soils which locate at many places throughout the nation and then examines limitation of their use based on the specifications of different countries. The variaton of shear strength with both different fine contents and saturation is also investigated. It is known that the grain size distribution of most weathered soils are not satisfied with the general requirement. However their use is possible in wide range when the backfill keeps in unsaturated condition using good drainage facilities and 1 or pervious reinforcements.

  • PDF

Behavior Characteristics of Reinforced Earth Wall using Fiber-Mixed Soil Backfill (뒤채움재료로 단섬유혼합토를 사용한 보강토옹벽의 거동특성)

  • Cho, Sam-Deok;Ahn, Tae-Bong;Oh, Se-Yong;Lee, Kwang-Wu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.3 no.1
    • /
    • pp.43-52
    • /
    • 2004
  • Laboratory model tests were conducted to assess the behavior characteristics of geogrid reinforced earth walls using fiber-mixed soil backfill with different surcharge loads and reinforcement spacing. The models were built in the box having dimensions, 100cm tall, 140cm long, and 100cm wide. The reinforcements used were geonet(tensile strength, 0.79t/m) and geogrid(tensile strength, 2.26t/m). Decomposed granite soil(ML) with or without polypropylene fiber was used backfill material. Strain gauges and LVDTs were installed on the retaining walls to measure the strain of the reinforcements and the displacements of the wall facings.

  • PDF

A Case Study of Hybrid Reinforced Geo-Structure using Reinforced Concrete Block and Slope (콘크리트 블록식 보강토 옹벽과 보강사면을 복합으로 이용한 보강토의 설계 및 시공사례 연구)

  • Kim, Young-Nam;Chae, Young-Su;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.4
    • /
    • pp.47-56
    • /
    • 2005
  • With the need of efficient site use retaining walls have frequently used. Of them dry cast modular block wall(MBW), in which geogrid and concrete block are used is getting popular because of its simplicity and economical efficiency of construction. However, since this method is based on the theory of earth pressure, sands with good quality should be used. In contrast, reinforced soil slope(RSS) that the slope is less than $70^{\circ}$ can use wider range of soil than MBW. A hybrid reinforced geo-structure might be a good alternative in view of overcoming difficulty obtaining soils with good quality as well as maximizing the efficiency of site use. This method is composed of reinforced block wall and reinforced soil slope. In this method, reinforced block wall is constructed up to a certain height vertically at ground boundary first. Reinforced soil slope is then constructed on the block wall subsequently. This paper introduces several technical points that should be taken into account in design and construction.

  • PDF

Comparison of Behaviour of Straight and Curved Mechanically Stabilized Earth Walls from Numerical Analysis Results (수치해석을 통한 보강토옹벽 직선부와 곡선부의 거동 특성)

  • Jung, Hyuk-Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.83-92
    • /
    • 2017
  • This paper deals with numerical analysis of behavior of curved mechanically stabilized earth(MSE) walls with geosynthetics reinforcement. Unlike typical concrete retaining walls, MSE wall enables securing stability of higher walls without being constrained by backfill height and is currently and widely used to create spaces for industrial and residential complexes. The design of MSE walls is carried out by checking external stability, similarly to the external checks of conventional retaining wall. In addition, internal stability check is mandatory. Typical stability check based on numerical analysis is done assuming 2-dimensional condition (plane strain condition). However, according to the former studies of 3-dimensional MSE wall, the most weakest part of a curved geosynthetic MSE wall is reported as the convex location, which is also identified from the studies of the laboratory model tests and field monitoring. In order to understand the behaviour of the convex location of the MSE wall, 2-dimensional analysis clearly reveals its limitation. Furthermore, laboratory model tests and field monitoring also have restriction in recognizing their behaviour and failure mechanism. In this study, 3-dimensional numerical analysis was performed to figure out the behaviour of the curved part of the geosynthetic reinforced wall, and the results of the straight-line and curved part in the numerical analysis were compared and analysed. In addition, the behaviour characteristics at each condition were compared by considering the overburden load and relative density of backfill.

Damage to earth structures by the 2004 Niigata-ken Chuetsu earthquake in Japan and their rehabilitation works

  • Koseki, Junichi;Tsutsumi, Yukika
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.430-433
    • /
    • 2006
  • Damage to earth structures for roads, railways and residential areas, as well as dams and river levees, during the 2004 Niigata-ken Chuetsu earthquake in Japan, and their rehabilitation works are overviewed. Several influential factors are pointed out, such as a) heavy rainfall preceding the earthquake, b) large aftershocks, c) geological conditions for subsoil including existence of liquefiable layers, d) compaction degrees for embankment, and e) drainage capacity from subsoil/embankments. It is also reported that, in the reconstruction works of damaged roads and railways, preferred use of geogrid-reinforced soil retaining walls was implemented.

  • PDF

Analysis of Application Cases and Evaluation of Effectiveness on Portable Dynamic Cone Penetration Test (DCPT) to Identify the Deterioration Cause of Damaged Reinforced Earth Walls (보강토옹벽의 피해원인 규명을 위한 휴대형 동적콘관입시험(DCPT) 적용사례 분석 및 효용성 평가)

  • Lee, Kwang-Wu;Cho, Sam-Deok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.4
    • /
    • pp.95-109
    • /
    • 2020
  • In this study, a total of six site cases were reviewed to assess the site applicability of portable dynamic cone penetration test (DCPT) by identifying the cause of damage to the damaged reinforced earth wall using portable dynamic cone penetration test. An improved dynamic concrete penetration tester was used at the site to enable ground surveys of more than 6 meters. The test results were compared with the results of the standard penetration test (SPT) and the correlation was analyzed. Through the analysis of various field application cases, it was found that portable dynamic cone penetration test was very convenient to apply at the site of the damaged reinforced earth wall, and DCPT could play a major role in identifying the cause of damage and verifying stability of the retaining wall by continuously identifying the ground strength. In addition, it was found that the results of the dynamic cone penetration test and the standard penetration test showed a correlation of N≒(1/3~2/3)·Nd in sandy soil.

Assessments of Creep Properties of Strip Type fiber Reinforcement (띠형 섬유보강재의 크리프 특성 평가)

  • 전한용;유중조;김홍택;김경모;김영윤
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.279-289
    • /
    • 2003
  • Geosynthetic reinforced earth wall was introduced about 20 years ago and many structures have been constructed. Especially, segmental concrete panel facing and friction tie system are the most popular system in Korea, and this friction tie was composed of high tenacity PET filament and LDPE(Low Density Polyethylene) sheath. Due to the lack of direct-test results, design coefficients of friction tie (creep reduction factor) had been determined by quoting the previous and the foreign reference data. This is an unreasonable fact for the use of friction ties. In this study, the creep tests were performed to evaluate the creep behavior of friction tie, and the reduction factor of creep was calculated for the correct design of geosynthetic reinforced earth retaining walls. From the test results, finally it was found that the allowable creep strength of friction tie is 60% of Tult during service life, and creep reduction factor is 1.67 for each grade of friction ties.

Investigation on Behavior of Reinforced Segmental Retaining Walls (블럭식 보강토 옹벽의 거동 특성 연구)

  • 유충식;이광문
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.1
    • /
    • pp.53-62
    • /
    • 1999
  • Despite the frequent use of the soil-reinforced segmental retaining wall (SRW) system, the roles of the different components comprising the system, such as facing blocks, reinforcements, backfill, and block/backfill interface, are still not fully understood, and much still need to be investigated for more safe and economical design/analysis method. Therefore, this study was undertaken with the aim of understanding the effect of the shear strength of backfill material and the reinforcement stiffness on the behavior of SRW by using the finite element analysis. In the analysis the details of construction sequence and the SRW components were carefully modeled, and a parametric study was performed in order to investigate the effects of shear strength of backfill soil and reinforcement stiffness on the wall displacement and earth pressure, the vertical stress under the reinforced block, the reinforcement and block/reinforcement connection forces. Implications of the findings from this study to current design practices were discussed in detail.

  • PDF