• 제목/요약/키워드: reinforced concrete structures (RC)

검색결과 1,044건 처리시간 0.029초

탄산화가 진행된 기존 RC구조물의 보수공법 적용후 철근의 부식확률 평가에 관한 연구 (A Study on probability of rebar corrosion After repair method of carbonated existing RC structures)

  • 이형민;김상열;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 춘계 학술논문 발표대회
    • /
    • pp.32-33
    • /
    • 2015
  • As the importance of maintenance of reinforced concrete structure recently has emerged, the attention of durability of structure has been increasing. There are many studies about durability decline especially due to the carbonation. In order to study carbonation progress after surface repair of carbonated concrete, each carbonation penetration velocity from different repair materials of concrete structure is compared through the experiment of carbonation accelerating CO2 concentration to 100%. As carbonation infiltration progress is predicted through this study, the counterplan of service life evaluation will be prepared on selection of repair materials of concrete structure.

  • PDF

Computational Lagrangian Multiplier Method by using for optimization and sensitivity analysis of rectangular reinforced concrete beams

  • Shariat, Mehran;Shariati, Mahdi;Madadi, Amirhossein;Wakil, Karzan
    • Steel and Composite Structures
    • /
    • 제29권2호
    • /
    • pp.243-256
    • /
    • 2018
  • This study conducts an optimization and sensitivity analysis on rectangular reinforced concrete (RC) beam using Lagrangian Multiplier Method (LMM) as programming optimization computer soft ware. The analysis is conducted to obtain the minimum design cost for both singly and doubly RC beams according to the specifications of three regulations of American concrete institute (ACI), British regulation (BS), and Iranian concrete regulation (ICS). Moreover, a sensitivity analysis on cost is performed with respect to the effective parameters such as length, width, and depth of beam, and area of reinforcement. Accordingly, various curves are developed to be feasibly utilized in design of RC beams. Numerical examples are also represented to better illustrate the design steps. The results indicate that instead of complex optimization relationships, the LMM can be used to minimize the cost of singly and doubly reinforced beams with different boundary conditions. The results of the sensitivity analysis on LMM indicate that each regulation can provide the most optimal values at specific situations. Therefore, using the graphs proposed for different design conditions can effectively help the designer (without necessity of primary optimization knowledge) choose the best regulation and values of design parameters.

Eccentrically compressive behaviour of RC square short columns reinforced with a new composite method

  • Zhang, Fan;Lu, Yiyan;Li, Shan;Zhang, Wenlong
    • Steel and Composite Structures
    • /
    • 제27권1호
    • /
    • pp.95-108
    • /
    • 2018
  • A new composite reinforced method, namely self-compacting concrete filled circular CFRP-steel jacketing, was proposed in this paper. Experimental tests on eight RC square short columns reinforced with the new composite reinforced method and four RC square short columns reinforced with CFS jackets were conducted to investigate their eccentrically compressive behaviour. Nine reinforced columns were subjected to eccentrically compressive loading, while three reinforced columns were subjected to axial compressive loading as reference. The parameters investigated herein were the eccentricity of the compressive loading and the layer of CFRP. Subsequently, the failure mode, ultimate load, deformation and strain of these reinforced columns were discussed. Their failure modes included the excessive bending deformation, serious buckling of steel jackets, crush of concrete and fracture of CFRP. Moreover, these reinforced columns exhibited a ductile failure globally. Both the eccentricity of the compressive loading and the layer of CFRP had a significant effect on the eccentrically compressive behaviour of reinforced columns. Finally, formulae for the evaluation of the ultimate load of reinforced columns were proposed. The theoretical formulae based on the ultimate equilibrium theory provided an effective, acceptable and safe method for designers to calculate the ultimate load of reinforced columns under eccentrically compressive loading.

An Analytical Model for FRP Debonding in Strengthened RC Beams under Monotonic and Cyclic Loads

  • Moein, Reza Saeidi;Tasnimi, Abbas Ali
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권4호
    • /
    • pp.499-511
    • /
    • 2016
  • Reinforced concrete (RC) beams strengthened by externally bonded reinforcement often fail by debonding. This paper presents an experimental and analytical study aimed at better understanding and modeling the fiber reinforced polymer (FRP) debonding failures in strengthened RC beams under monotonic and cyclic loads. In order to investigate the flexural behavior and failure modes of FRP-strengthened beams under monotonic and cyclic loadings, an experimental program was carried out. An analytical study based on the energy balance of the system was also performed. It considers the dominant mechanisms of energy dissipation during debonding and predicts the failure load of the strengthened beams. Validation of the model was carried out using test data obtained from the own experimental investigation.

철도하중에 대한 철근 콘크리트와 강섬유 보강 철근 콘크리트 전단이음부의 피로거동에 관한 실험적 연구 (Study on the Fatigue Behavior of a Joint between RC and SFRC Subjected to Shear)

  • 강보순
    • 한국철도학회논문집
    • /
    • 제3권4호
    • /
    • pp.194-202
    • /
    • 2000
  • Fatigue behavior of shear joints between the combined reinforced concrete(RC) and the reinforced steel fiber concrete(SFRC) specimens has been experimentally investigated. Experimental parameters used are the amount of steel fiber and the type of shear joint. Six specimens have been tested under static load, and eight specimens have been subjected to the fatigue load in a range of 50 % and 5 % of the ultimate static load. The purpose of this research is to propose an empirical formula for fatigue shear behavior of the combined RC and SFRC structures on the basis of experimental result. It can be observed from experimental results that addition of steel fibers to concrete specimen increases the static ultimate load by approximately 25 %, enhances the fatigue behavior, and also reduces vertical and lateral displacements at the shear joint for a given load cycle after the occurrence of first crack.

  • PDF

Different macroscopic models for slender and squat reinforced concrete walls subjected to cyclic loads

  • Shin, Jiuk;Kim, JunHee
    • Earthquakes and Structures
    • /
    • 제7권5호
    • /
    • pp.877-890
    • /
    • 2014
  • The purpose of this study is to present adequate modeling solutions for squat and slender RC walls. ASCE41-13 (American Society of Civil Engineers) specifies that the aspect ratios of height to width for the RC walls affect the hysteresis response. Thus, this study performed non-linear analysis subjected to cyclic loading using two different macroscopic models: one of macroscopic models represents flexural failure of RC walls (Shear Wall Element model) and the other (General Wall Element model) reflects diagonal shear failure occurring in the web of RC walls. These analytical results were compared to previous experimental studies for a slender wall (> aspect ratio of 3.0) and a squat wall (= aspect ratio of 1.0). For the slender wall, the difference between the two macroscopic models was negligible, but the squat wall was significantly affected by parameters for shear behavior in the modeling method. For accurate performance evaluation of RC buildings with squat walls, it would be reasonable to use macroscopic models that give consideration to diagonal shear.

보강재 박리에 의한 GFRP 휨 보강 RC보의 파괴강도에 관한 실험 및 해석적 연구 (Experimental and Analytical Study on the Fracture Strength of RC Beams Strengthened for Flexure with GFRP Involving the Debonding of FRP Reinforcement)

  • 이종한;권혁배;강수태
    • 대한토목학회논문집
    • /
    • 제35권1호
    • /
    • pp.39-48
    • /
    • 2015
  • 섬유강화폴리머(FRP) 보강 철근콘크리트(RC) 구조물은 보강효과가 충분히 발휘되기 전에 보강재의 탈락으로 보강효과의 상실 및 구조부재의 갑작스러운 파괴를 야기할 수 있다. 현재 FRP 보강보의 박리파괴강도는 설계지침에서 제시된 보강재의 탈락변형률에 근거하여 무보강 RC보와 동일한 강도해석법을 적용하고 있다. 그러나, 각 설계지침에 따라 FRP 보강재의 탈락변형률이 달리 제시되고 있다. 따라서, 본 연구에서는 유리섬유강화폴리머(GFRP)로 보강된 RC보의 박리파괴 휨 강도 실험을 통해 각 설계기준에서 제시된 보강재 탈락변형률에 의한 박리파괴강도를 비교 평가하였다. 또한, 보강재 탈락에 의한 파괴는 콘크리트의 압축변형률이 극한변형률에 도달하기 전에 발생하므로, 본 연구에서는 재료의 비선형 응력분포를 고려한 해석을 수행하였다. 그리고, GFRP 보강 RC보의 설계 박리파괴강도 산정 시 강도설계법에 의해 산정된 무보강 RC보의 극한휨강도와 유사한 안전율을 나타낼 수 있는 강도식을 제시하였다.

A 3-D RBSM for simulating the failure process of RC structures

  • Zhong, Xingu;Zhao, Chao;Liu, Bo;Shu, Xiaojuan;Shen, Mingyan
    • Structural Engineering and Mechanics
    • /
    • 제65권3호
    • /
    • pp.291-302
    • /
    • 2018
  • Rigid body spring method (RBSM) is an effective tool to simulate the cracking process of structures, and has been successfully applied to investigate the behavior of reinforced concrete (RC) members. However, the theoretical researches and engineering applications of this method mainly focus on two-dimensional problems as yet, which greatly limits its applications in actual engineering projects. In this study, a three-dimensional (3-D) RBSM for RC structures is proposed. In the proposed model, concrete, reinforcing steels, and their interfaces are represented as discrete entities. Concrete is partitioned into a collection of rigid blocks and a uniform distribution of normal and tangential springs is defined along their boundaries to reflect its material properties. Reinforcement is modeled as a series of bar elements which can be freely positioned in the structural domain and irrespective of the mesh geometry of concrete. The bond-slip characteristics between reinforcing steel and concrete are also considered by introducing special linkage elements. The applicability and effectiveness of the proposed method is firstly confirmed by an elastic T-shape beam, and then it is applied to analyze the failure processes of a Z-type component under direct shear loading and a RC beam under two-point loading.

Nonlinear dynamic response of reinforced concrete building retrofitted with buckling restrained braces

  • Guneyisi, Esra Mete;Tunca, Osman;Azez, Ibrahim
    • Earthquakes and Structures
    • /
    • 제8권6호
    • /
    • pp.1349-1362
    • /
    • 2015
  • This paper presents an analytical study aimed at evaluating the effectiveness of using buckling-restrained braces (BRBs) in mitigating the seismic response of a case study 6 storey reinforced concrete (RC) building. In the design of the BRBs with non-prismatic cross-sections, twelve combinations of ${\alpha}$ and ${\beta}$ design parameters that influence the strength and stiffness of the BRBs, respectively, were considered. The response of the structure with and without BRBs under earthquake ground accelerations were evaluated through nonlinear dynamic analysis. Two sets of ground motions representative of the design earthquake with 10% and 50% exceedance probability in fifty years were taken into account. By comparing the structural performance of the original and buckling restrained braced structures, it was observed that the use of the BRBs were very effective in mitigating the seismic response as a retrofit scheme. However, the selection of the strength and stiffness parameters of the BRBs had considerable effect on the response characteristics of RC structures. For instance, by increasing the value of ${\alpha}$ and by decreasing the value of ${\beta}$ of the buckling-restrained braces, the maximum deformation demand of the structures increased.

Enhanced macro element for nonlinear analysis of masonry infilled RC frame structures

  • Mebarek Khelfi;Fouad Kehila
    • Earthquakes and Structures
    • /
    • 제25권3호
    • /
    • pp.177-186
    • /
    • 2023
  • Reinforced concrete frames with a masonry infill panel is a structural typology frequently used worldwide. In seismic cases, the interaction between the masonry infill and the RC frames constitutes one of the most complex subjects in earthquake engineering. In this work, an enhancement of an existing numerical model is proposed to improve the estimation of lateral strength and stiffness of masonry-infilled frame structures and predict their probable failure modes. The proposed improvement is based on attributing corrective coefficients to the shear strength of each diagonal shear spring of the macro element, which simulates the masonry infill. The improved numerical model is validated by comparing the results with those of the original numerical model and with experimental results available in the literature. The enhanced macro element model can be used as a powerful, accessible tool for assessing the capacity and stiffness of masonry-infilled frame structures and predicting their probable failure modes.