• Title/Summary/Keyword: reinforced concrete structures (RC)

Search Result 1,029, Processing Time 0.023 seconds

Seismic interaction of flexural ductility and shear capacity in reinforced concrete columns

  • Howser, Rachel;Laskar, A.;Mo, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.5
    • /
    • pp.593-616
    • /
    • 2010
  • The seismic performance of reinforced concrete (RC) bridge columns is a significant issue because the interaction of flexural ductility and shear capacity of such columns with varied amounts of lateral reinforcement is not well established. Several relationships between flexural ductility and shear capacity have been proposed by various researchers in the past. In this paper, a parametric study on RC bridge columns is conducted using a nonlinear finite element program, "Simulation of Concrete Structures (SCS)", developed at the University of Houston. SCS has been previously used to predict the seismic behavior of such columns. The predicted results were compared with the test results obtained from experiments available in literature. Based on the results of the parametric study performed in this paper, a set of new relationships between flexural ductility and shear capacity of RC columns is proposed for seismic design.

Flexural Strength Capacity of RC Beams Strengthened with Pultruded T-Shape Carbon Fiber Reinforced Polymers (인발성형된 T형 탄소섬유복합재료를 이용한 철근콘크리트보의 휨보강 성능)

  • Park, Jong-Sup;Park, Young-Hwan;You, Young-Jun;Jung, Woo-Tai;Kang, Jae-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.473-476
    • /
    • 2004
  • Carbon Fiber Reinforced Polymer(CFRP) composites are widely applied to strengthen deteriorated concrete structures. This paper presents the experimental results of the performance of reinforced concrete(RC) beams strengthened with Near Surface Mounted T-shape CFRP. Simple beams with 3m span length were tested to investigate the effect of CFRP reinforcement shapes on the flexural behavior of strengthened RC beams. The test results were analyzed with the special emphasis on the failure mode and the maximum load.

  • PDF

Seismic retrofitting and fragility for damaged RC beam-column joints using UHP-HFRC

  • Trishna, Choudhury;Prem P., Bansal
    • Earthquakes and Structures
    • /
    • v.23 no.5
    • /
    • pp.463-472
    • /
    • 2022
  • Reinforced concrete (RC) beam column joints (BCJ) have mostly exhibited poor seismic performance during several past earthquakes, typically due to the poor-quality concrete or lack of reinforcement detailing typical of pre-code design practice. The present study is motivated towards numerical simulation and seismic fragility assessment of one such RC-BCJ. The BCJ is loaded to failure and strengthened using Ultra High Performance-Hybrid Fiber Reinforced Concrete (UHP-HFRC) jacketing. The strengthening is performed for four different BCJ specimens, each representing an intermediate damage state before collapse. viz., slight, moderate, severe, and collapse. From the numerical simulation of all the BCJ specimens, an attempt is made to correlate different modelling and design parameters of the BC joint with respect to the damage states. In addition, seismic fragility analysis of the original as well as the retrofitted damaged BCJ specimens show the relative enhancement achieved in each case.

Numerical investigation of RC structural walls subjected to cyclic loading

  • Cotsovos, D.M.;Pavlovic, M.N.
    • Computers and Concrete
    • /
    • v.2 no.3
    • /
    • pp.215-238
    • /
    • 2005
  • This work is based on a nonlinear finite-element model with proven capacity for yielding realistic predictions of the response of reinforced-concrete structures under static monotonically-increasing loading. In it, the material description relies essentially on the two key properties of triaxiality and brittleness and, thus, is simpler than those of most other material models in use. In this article, the finite-element program is successfully used in investigating the behaviour of a series of RC walls under static cyclic loading. This type of loading offers a more strenuous test of the validity of the proposed program since cracks continuously form and close during each load cycle. Such a test is considered to be essential before attempting to use the program for the analysis of concrete structures under seismic excitation in order to ensure that the solution procedure adopted is numerically stable and can accurately predict the behaviour of RC structures under such earthquake-loading conditions. This is achieved through a comparative study between the numerical predictions obtained presently from the program and available experimental data.

The Application of Acoustic Emission to detect the Crack Source Location for RC Beams Strengthened With Carbon Fiber Reinforced Plates (탄소섬유보강판으로 보강된 철근콘크리트보의 균열 발생원 탐사를 위한 Acoustic Emission의 적용)

  • 한상훈;이웅종;조홍동;나승일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.423-428
    • /
    • 2000
  • This Study was conducted to evaluate structural integrity and crack source location of RC structures strengthened with Carbon Fiber Reinforced Plates using acoustic, Four pont bending tests were carried out RC reinforced with C.F.R.P for the several strengthening specimens, the process of fracture was monitored by Acoustic Emission and duration and energy in AE parameters were analyzed. The location and propagation of crack could be easily determined by monitoring AE, which concluded that AE technique could be a very useful tool to evaluate structural integrity of reinforced RC structure.

  • PDF

LIFE-SPAN SIMULATION AND DESIGN APPROACH FOR REINFORCED CONCRETE STRUCTURES

  • An, Xuehui;Maekawa, Koichi;Ishida, Tetsuya
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.3-17
    • /
    • 2007
  • This paper provides an introduction to life-span simulation and numerical approach to support the performance design processes of reinforced concrete structures. An integrated computational system is proposed for life-span simulation of reinforced concrete. Conservation of moisture, carbon dioxide, oxygen, chloride, calcium and momentum is solved with hydration, carbonation, corrosion, ion dissolution. damage evolution and their thermodynamic/mechanical equilibrium. Coupled analysis of mass transport and damage mechanics associated with steel corrosion is presented for structural performance assessment of reinforced concrete. Multi-scale modeling of micro-pore formation and transport phenomena of moisture and ions are mutually linked for predicting the corrosion of reinforcement and volumetric changes. The interaction of crack propagation with corroded gel migration can also be simulated. Two finite element codes. multi-chemo physical simulation code (DuCOM) and nonlinear dynamic code of structural reinforced concrete (COM3) were combined together to form the integrated simulation system. This computational system was verified by the laboratory scale and large scale experiments of damaged reinforced concrete members under static loads, and has been applied to safety and serviceability assessment of existing structures. Based on the damage details predicted by the nonlinear finite element analytical system, the life-span-cost of RC structures including the original construction costs and the repairing costs for possible damage during the service life can be evaluated for design purpose.

  • PDF

Mechanical splices of reinforcing bars subjected to bending moments

  • Sadegh Hashemi;Ali Kheyroddin;Ghasem Pachideh
    • Structural Engineering and Mechanics
    • /
    • v.90 no.3
    • /
    • pp.301-311
    • /
    • 2024
  • Different methods have been proposed in the literature for splicing the reinforcing bars in the construction of concrete structures, which are alternatively used depending on design requirements. The most common approach is the lap splicing which is known as a cost-effective method although, its main disadvantages including congestion of bars at the lap zone and consequently, material wastage has motivated utilization of the other techniques such as mechanical splices (couplers). To better evaluate the performance of the couplers, 6 reinforced concrete (RC) beams whose difference is only the type and location of splices have been experimentally studied in this paper. Based on the results, the mechanical connection of the bars did not markedly affect the load-carrying capacity of the specimens. Moreover, it was observed that after applying the loads and failure of the specimens, none of the bars ruptured at the splice location and all couplers remained undamaged.

Numerical simulation of tested reinforced concrete beams strengthened by thin fibre-reinforced cementitious matrix jackets

  • Georgiadi-Stefanidi, K.;Mistakidis, E.;Perdikaris, P.;Papatheocharis, T.
    • Earthquakes and Structures
    • /
    • v.1 no.4
    • /
    • pp.345-370
    • /
    • 2010
  • The paper presents a study on the numerical simulation of the behaviour of conventional reinforced concrete (RC) beams strengthened by thin fibre-reinforced cementitious matrix (FRCM) jackets. The study covers the cases of retrofitting RC beams with or without stirrups with jackets reinforced with longitudinal and transverse steel reinforcement or with light wire mesh. The strengthened RC beams to be modelled were tested under static monotonic and fully reversing cyclic loading. The numerical results show that the numerical model used predicted quite well the experimental results.

Flexural analysis of steel fibre-reinforced concrete members

  • Chalioris, Constantin E.;Panagiotopoulos, Thomas A.
    • Computers and Concrete
    • /
    • v.22 no.1
    • /
    • pp.11-25
    • /
    • 2018
  • A numerical approach for the evaluation of the flexural response of Steel Fibrous Concrete (SFC) cross-sections with arbitrary geometry, with or without conventional steel longitudinal reinforcing bars is proposed. Resisting bending moment versus curvature curves are calculated using verified non-linear constitutive stress-strain relationships for the SFC under compression and tension which include post-peak and post-cracking softening parts. A new compressive stress-strain model for SFC is employed that has been derived from test data of 125 stress-strain curves and 257 strength values providing the overall compressive behaviour of various SFC mixtures. The proposed sectional analysis is verified using existing experimental data of 42 SFC beams, and it predicts the flexural capacity and the curvature ductility of SFC members reasonably well. The developed approach also provides rational and more accurate compressive and tensile stress-strain curves along with bending moment versus curvature curves with regards to the predictions of relevant existing models.

A study on pushover analyses of reinforced concrete columns

  • Sung, Yu-Chi;Liu, Kuang-Yen;Su, Chin-Kuo;Tsai, I-Chau;Chang, Kuo-Chun
    • Structural Engineering and Mechanics
    • /
    • v.21 no.1
    • /
    • pp.35-52
    • /
    • 2005
  • This paper proposes a realistic approach to pushover analyses of reinforced concrete (RC) structures with single column type and frame type. The characteristic of plastic hinge of a single RC column subjected to fixed axial load was determined first according to column's three distinct failure modes which were often observed in the experiments or earthquakes. By using the determined characteristic of plastic hinge, the pushover analyses of single RC columns were performed and the analytical results were investigated to be significantly consistent with those of cyclic loading tests. Furthermore, a simplified methodology considering the effect of the variation of axial force for each RC column of the frame structure during pushover process is proposed for the first time. It would be helpful in performing pushover analysis for the structures examined in this study with efficiency as well as accuracy.