• 제목/요약/키워드: reinforced concrete panels

검색결과 145건 처리시간 0.023초

반복하중을 받는 콘크리트 막요소의 응력-변형률 관계 (Stress-Strain Relationship of Concrete Membrane Elements Subjected to Reversed Cyclic Loading)

  • 이정윤
    • 한국공간구조학회논문집
    • /
    • 제1권2호
    • /
    • pp.93-100
    • /
    • 2001
  • A stress-strain relationship for reinforced concrete membrane elements subjected to reversed cyclic loading is quite different to that of concrete cylinder subjected to uniaxial compression. The compressive strength of cracked concrete membrane elements is reduced by cracking due to tension in the perpendicular direction. Based on the three reinforced concrete panel tests, a softened stress-strain curve of concrete subjected to reversed cyclic loading is proposed. The proposed model consists of seven stages in the compressive zones and six stages in the tensile zones. The proposed model is verified by comparing to the test results.

  • PDF

Behavior of light weight sandwich panels under out of plane bending loading

  • Ganapathi, S. Chitra;Peter, J. Annie;Lakshmanan, N.;Iyer, N.R.
    • Steel and Composite Structures
    • /
    • 제21권4호
    • /
    • pp.775-789
    • /
    • 2016
  • This paper presents the flexural behavior & ultimate strength performance of innovative light weight sandwich panels of size $3{\times}1.2m$ with two different solidity ratios viz. 0.5 and 0.33 under out of plane bending load. From the experimental studies, it is observed that the flexural strength and the stiffness are increased by about 46% and five folds for lesser solidity ratio case. From the measured strains of the shear connectors, full shear transfer between the concrete wythes is observed. The yielding occurred approximately at 4% and 0.55% of the ultimate deformation for 100 mm & 150 mm thick panels, which shows the large ductility characteristics of the panels. From the study, it is inferred that the light weight sandwich panels behave structurally in a very similar manner to reinforced concrete panels. Further from the numerical study, it is observed that the numerical values obtained by FE analysis are in good agreement with the experimental observations.

FRP 보강 폴리머 모르터 패널의 역학적 특성 (Mechanical Properties of Polymer Mortar Panel Reinforced by FRP)

  • 유능환;연규석;김기성;이윤수;최동순
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1999년도 Proceedings of the 1999 Annual Conference The Korean Society of Agricutural Engineers
    • /
    • pp.342-347
    • /
    • 1999
  • This study was initiated to develop a precast polymer concrete panel production method and to describe some engineering properties of FRP (Fiberglass Reinforced Plastics) reinforced polymer mortar. Specimens with different panel thickness and FRP reinforcement were prepared and tested and analyzed with respect to structural behaviors. Cracking moment was mostly affected by the thickness and reinforced FRP. Data of the study could be widely applied to the designing and planning of production processes of many polymer concrete products of which all or some of the components are composed with thin panels.

  • PDF

Efficient membrane element for cyclic response of RC panels

  • Tesser, Lepoldo;Talledo, Diego A.
    • Computers and Concrete
    • /
    • 제20권3호
    • /
    • pp.351-360
    • /
    • 2017
  • This paper presents an efficient membrane finite element for the cyclic inelastic response analysis of RC structures under complex plane stress states including shear. The model strikes a balance between accuracy and numerical efficiency to meet the challenge of shear wall simulations in earthquake engineering practice. The concrete material model at the integration points of the finite element is based on damage plasticity with two damage parameters. All reinforcing bars with the same orientation are represented by an embedded orthotropic steel layer based on uniaxial stress-strain relation, so that the dowel and bond-slip effect of the reinforcing steel are presently neglected in the interest of computational efficiency. The model is validated with significant experimental results of the cyclic response of RC panels with uniform stress states.

프리케스트판을 이용한 교량상판 단면증설 보강공법에 관한 실험적 연구 (An Experimental Study on Reinforced Effect Using Double Adhensive Panels in Bridge Deck Slabs)

  • 박정기;하경민;지한상;김은겸
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.791-796
    • /
    • 2000
  • Purpose of this study is to analyze the characteristics and reinforcement effects of restored the RC bridge deck with small precast panel through static load tests and to provide the basic information for the damaged slab decks. In the tests for realizing movement of general RC bridge slabs, 6 samples are prepared and tested. All reinforced samples are restored with 1 or 2-layers precast panels by epoxy mortar. The movement of restored slabs is analyzed and compared with the behavior of non-restored slabs. In result of these tests, tension cracks due to bending moment are show, and after static load test there happens finally a punching shear failure, which is the general type of RC bridge failure. The tests show that restoration of the RC slab results in increasing of loading capacity about 30~50% an restoring panels are stick to slab and moving with slab under loading test.

  • PDF

철근콘크리트 판넬의 인장강화효과 (Tension Stiffening Effect in Reinforced Concrete Panels)

  • 곽효경;김도연
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 가을 학술발표회 논문집
    • /
    • pp.141-148
    • /
    • 1998
  • An analytical model which can simulate the post-cracking behavior of reinforced concrete structures subjected to in-plane shear and normal stresses is presented. Based on the force equilibriums, compatibility conditions, and bond stress-slip relationship between steel and concrete, a criterion to simulate consider the tension-stiffening effect is proposed. The material behavior of concrete is described by an orthotropic constitutive model, and focused on the tension-compression region with tension-stiffening and compression softening effects defining equivalent uniaxial relations in the axes of orthotropy. Correlation studies between analytical results and available experimental data are conducted with the objective to establish the validity of the proposed model.

  • PDF

Brief Review of Studies on Concrete Wall Panels in One and Two Way Action

  • Doh, Jeung-Hwan;Fragomeni, Sam;Kim, Jin-Woo
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • 제4권1호
    • /
    • pp.38-43
    • /
    • 2001
  • This paper provides review of research results undertaken on reinforced concrete wall panels in one way and two way. The review also highlights two well accepted code design methods from the American (ACI) and Australia Concrete structures standards. The emphasis is on walls under axial compression only with changes in various parameters. These include the variation of panel dimensions panels (ie. Slenderness, thinness and aspect ratios), steel reinforcement, eccentricities, concrete strength and support conditions. The main purpose of this review is to compile research previous by undertaken to highlight the inadequate in certain research literature. It is envisage that this review will expose areas in wall research required so that inadequate in current methods can be rectified.

  • PDF

비정형 콘크리트 패널 생산 시스템 구축 기초연구 (A Basic Study of Production System Development of Free-form Concrete Panels)

  • 손승현;김기호;김선국
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 춘계 학술논문 발표대회
    • /
    • pp.70-71
    • /
    • 2019
  • Glass fiber reinforced concrete (GFRC) is very suitable as a material for free-form concrete panels (FCPs) because of its lightweight, strong, moldable, durable and sustainable properties. GFRC is superior in construction and maintenance compared with materials such as steel, aluminium, titanium, glass and plastic, and is advantageous in cost. However, GFRC is being produced by skilled craftsmen, and still lacks the technology to economically produce high quality FCPs. Currently, there is a technology to automatically and accurately produce FCPs. However, the developed technology can not be applied to the field with simple production technology without production line for mass production. To solve this problem, the purpose of this study is a basic study of production system development of free-form concrete panels. This study introduces the developed FCPs production technology and builds FCP production system for mass production. The results of this study will be used as basic data for the commercial production of FCPs in the future.

  • PDF

ECC (Engineered Cementitious Composite)의 연성이 전단벽의 사인장 거동에 미치는 영향 (Influence of ECC ductility on the diagonal tension behavior (shear capacity) of shear-wall panel)

  • 하기주;신종학;김윤용;김정수;김진근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.321-324
    • /
    • 2005
  • This paper presents a preliminary study on the influence of material ductility on diagonal tension behavior of shear-wall panels. There have been a number of previous studies, which suggest that the use of high ductile material such as ECC (Engineered Cementitious Composite) significantly enhanced shear capacity of structural elements even without shear reinforcements involved. The present study emphasizes increased shear capacity of shear-wall panels by employing a unique strain-hardening ECC reinforced with poly(vinyl alcohol) (PVA) short random fibers. Normal concrete was adopted as the reference material. Experimental investigation was performed to assess the failure mode of shear-wall panels subjected to knife-edge loading. The results from experiments show that ECC panels exhibit a more ductile failure mode and higher shear capacity when compared to ordinary concrete panels. The superior ductility of ECC was clearly reflected by micro-crack development, suppressing the localized drastic fracture typically observed in concrete specimen. This enhanced structural performance indicates that the application of ECC for a in-filled frame panel can be effective in enhancing seismic resistance of an existing frame in service.

  • PDF

파형 GFRP 전단연결재의 폭 및 너비에 따른 중단열 벽체의 면내전단거동 (Effects of Corrugated GFRP Shear Connector Width and Pitch on In-plane Shear Behavior of Insulated Concrete Sandwich Wall Panels (CSWP))

  • 장석준;오태식;유영찬;김호룡;윤현도
    • 콘크리트학회논문집
    • /
    • 제26권4호
    • /
    • pp.421-428
    • /
    • 2014
  • 이 연구는 파형 GFRP 전단연결재가 보강된 중단열 벽체의 면내전단거동을 알아보기 위하여 실시되었다. 기존의 중단열 벽체의 단열성능 향상과 내/외측 벽체의 합성거동을 위하여 파형 GFRP 전단연결재를 보강하였다. 실험체는 2개의 단열재로 구분된 3개의 콘크리트 벽체로 구성되어 있으며, 중앙부 벽체에 수직방향의 전단력을 가하였다. 주요변수는 단열재의 종류 (압출법 보온판 및 비드법 보온판) 및 보강된 전단연결재의 너비(300 및 400 mm)과 폭(10 및 15 mm)를 변수로 설정하였으며, 실험체의 파괴양상 및 전단흐름강도-평균상대변위 관계 대한 분석을 실시하였다. 실험 결과 콘크리트와 단열재의 부착응력은 중단열 벽체의 초기거동에 상당한 영향이 있는 것으로 판단되며, 전단연결재가 보강되지 않은 경우 XPSS를 사용한 중단열 벽체의 강성 및 강성이 EPS 단열재의 경우보다 높게 나타났다. 전단연결재의 보강효과는 단열재에 따라 상이하게 나타났으며, 전단연결재의 보강상세에 단열재의 역학적 특성을 고려해야 할 것으로 판단된다.