• Title/Summary/Keyword: reinforced concrete moment frames

Search Result 114, Processing Time 0.021 seconds

Minimum cost design of RCMRFs based on consistent approximation method

  • Habibi, Alireza;Shahryari, Mobin;Rostami, Hasan
    • Computers and Concrete
    • /
    • v.26 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • In this paper, a procedure for automated optimized design of reinforced concrete frames has been presented. The procedure consists of formulation and solution of the design problem in the form of an optimization problem. The minimization of total cost of R/C frame has been taken as the objective of optimization problem. In this research, consistent approximation method is applied to explicitly formulate constraints and objective function in terms of the design variables. In the presented method, the primary optimization problem is replaced with a sequence of explicit sub-problems. Each sub-problem is efficiently solved using the Sequential Quadratic Programming (SQP) method. The proposed method is demonstrated through a four-story frame and an eight-story frame, and the optimum results are compared with those in the available literature. It is shown that the proposed method can be easily applied to obtain rational, reliable, economical and practical designs for Reinforced Concrete Moment Resisting Frames (RCMRFs) while it is converged after a few analyses.

Plastic design of seismic resistant reinforced concrete frame

  • Montuori, Rosario;Muscati, Roberta
    • Earthquakes and Structures
    • /
    • v.8 no.1
    • /
    • pp.205-224
    • /
    • 2015
  • A new method for designing moment resisting concrete frames failing in a global mode is presented in this paper. Starting from the analysis of the typical collapse mechanisms of frames subjected to horizontal forces, the method is based on the application of the kinematic theorem of plastic collapse. The beam section properties are assumed to be known quantities, because they are designed to resist vertical loads. As a consequence, the unknowns of the design problem are the column sections. They are determined by means of design conditions expressing that the kinematically admissible multiplier of the horizontal forces corresponding to the global mechanism has to be the smallest among all kinematically admissible multipliers. In addition, the proposed design method includes the influence of second-order effects. In particular, second-order effects can play an important role in the seismic design and can be accounted for by means of the mechanism equilibrium curves of the analysed collapse mechanism. The practical application of the proposed methodology is herein presented with reference to the design of a multi-storey frame whose pattern of yielding is validated by means of push-over analysis.

Comparison of Nonlinear Analysis Programs for Small-size Reinforced Concrete Buildings I (소규모 철근콘크리트 건축물을 위한 비선형해석 프로그램 비교 I)

  • Yoo, Changhwan;Kim, Taewan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.219-228
    • /
    • 2015
  • For small-size reinforce-concrete buildings, Midas Gen, OpenSees, and Perform-3D, which are structural analysis programs that are most popularly used at present, were applied for nonlinear static pushover analysis, and then difference between those programs was analyzed. Example buildings were limited to 2-story frames only and frames with one or more rectangular walls. Analysis results showed that there was not much difference for frames only based on capacity curves. There were some differences for frames with rectangular walls, but it was not so significant. The global behaviors represented by the capacity curve were not so different, but the feature of each analysis program appeared when the results were analyzed in more detail. Therefore, the program users should understand the feature of the program well, and then conduct performance assessment. The result of this study is limited to low-story frames only and frames with rectangular walls so that it should be noted that it is possible to get different results for frames with non-rectangular walls or mid- to high-rise buildings.

Effect of reinforcement strength on seismic behavior of concrete moment frames

  • Fu, Jianping;Wu, Yuntian;Yang, Yeong-bin
    • Earthquakes and Structures
    • /
    • v.9 no.4
    • /
    • pp.699-718
    • /
    • 2015
  • The effect of reinforcing concrete members with high strength steel bars with yield strength up to 600 MPa on the overall seismic behavior of concrete moment frames was studied experimentally and numerically. Three geometrically identical plane frame models with two bays and two stories, where one frame model was reinforced with hot rolled bars (HRB) with a nominal yield strength of 335 MPa and the other two by high strength steel bars with a nominal yield strength of 600 MPa, were tested under simulated earthquake action considering different axial load ratios to investigate the hysteretic behavior, ductility, strength and stiffness degradation, energy dissipation and plastic deformation characteristics. Test results indicate that utilizing high strength reinforcement can improve the structural resilience, reduce residual deformation and achieve favorable distribution pattern of plastic hinges on beams and columns. The frame models reinforced with normal and high strength steel bars have comparable overall deformation capacity. Compared with the frame model subjected to a low axial load ratio, the ones under a higher axial load ratio exhibit more plump hysteretic loops. The proved reliable finite element analysis software DIANA was used for the numerical simulation of the tests. The analytical results agree well with the experimental results.

Three dimensional analysis of reinforced concrete frames considering the cracking effect and geometric nonlinearity

  • Kara, Ilker Fatih;Dundar, Cengiz
    • Structural Engineering and Mechanics
    • /
    • v.31 no.2
    • /
    • pp.163-180
    • /
    • 2009
  • In the design of tall reinforced concrete (R/C) buildings, the serviceability stiffness criteria in terms of maximum lateral displacement and inter-story drift must be satisfied to prevent large second-order P-delta effects. To accurately assess the lateral deflection and stiffness of tall R/C structures, cracked members in these structures need to be identified and their effective member flexural stiffness determined. In addition, the implementation of the geometric nonlinearity in the analysis can be significant for an accurate prediction of lateral deflection of the structure, particularly in the case of tall R/C building under lateral loading. It can therefore be important to consider the cracking effect together with the geometric nonlinearity in the analysis in order to obtain more accurate results. In the present study, a computer program based on the iterative procedure has been developed for the three dimensional analysis of reinforced concrete frames with cracked beam and column elements. Probability-based effective stiffness model is used for the effective flexural stiffness of a cracked member. In the analysis, the geometric nonlinearity due to the interaction of axial force and bending moment and the displacements of joints are also taken into account. The analytical procedure has been demonstrated through the application of R/C frame examples in which its accuracy and efficiency in comparison with experimental and other analytical results are verified. The effectiveness of the analytical procedure is also illustrated through a practical four story R/C frame example. The iterative procedure provides equally good and consistent prediction of lateral deflection and effective flexural member stiffness. The proposed analytical procedure is efficient from the viewpoints of computational effort and convergence rate.

Optimal Seismic Design Method Based on Genetic Algorithms to Induce a Beam-Hinge Mechanism in Reinforced Concrete Moment Frames (철근콘크리트 모멘트골조의 보-힌지 붕괴모드를 유도하는 유전자알고리즘 기반 최적내진설계기법)

  • Se-Woon Choi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.6
    • /
    • pp.399-405
    • /
    • 2023
  • This study presents an optimal seismic design method based on genetic algorithms to induce beam-hinge collapse mechanisms in reinforced concrete moment frames. Two objective functions are used. The first minimizes the cost of the structure and the second maximizes the energy dissipation capacity of the structure. Constraints include strength conditions of columns and beams, minimum conditions for column-to-beam flexural strength ratio, and conditions for preventing plastic hinge occurrence of columns. Linear static analysis is performed to evaluate the strength of members, whereas nonlinear static analysis is carried out to evaluate energy dissipation capacity and occurrence of plastic hinges. The proposed method was applied to a four-story example structure, and it was confirmed that solutions for inducing a beam-hinge collapse mechanism are obtained. The value of the column-beam flexural strength ratio of the obtained design was found to be larger than the value suggested by existing seismic codes. A more robust strategy is needed to induce a beam-hinge collapse mode.

Evaluating the accuracy of a new nonlinear reinforced concrete beam-column element comprising joint flexibility

  • Izadpanah, Mehdi;Habibi, AliReza
    • Earthquakes and Structures
    • /
    • v.14 no.6
    • /
    • pp.525-535
    • /
    • 2018
  • This study presents a new beam-column model comprising material nonlinearity and joint flexibility to predict the nonlinear response of reinforced concrete structures. The nonlinear behavior of connections has an outstanding role on the nonlinear response of reinforced concrete structures. In presented research, the joint flexibility is considered applying a rotational spring at each end of the member. To derive the moment-rotation behavior of beam-column connections, the relative rotations produced by the relative slip of flexural reinforcement in the joint and the flexural cracking of the beam end are taken into consideration. Furthermore, the considered spread plasticity model, unlike the previous models that have been developed based on the linear moment distribution subjected to lateral loads includes both lateral and gravity load effects, simultaneously. To confirm the accuracy of the proposed methodology, a simply-supported test beam and three reinforced concrete frames are considered. Pushover and nonlinear dynamic analysis of three numerical examples are performed. In these examples the nonlinear behavior of connections and the material nonlinearity using the proposed methodology and also linear flexibility model with different number of elements for each member and fiber based distributed plasticity model with different number of integration points are simulated. Comparing the results of the proposed methodology with those of the aforementioned models describes that suggested model that only uses one element for each member can appropriately estimate the nonlinear behavior of reinforced concrete structures.

Application of the Direct Displacement Based Design Methodology for Different Types of RC Structural Systems

  • Malekpour, Saleh;Dashti, Farhad
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.2
    • /
    • pp.135-153
    • /
    • 2013
  • This study investigates the direct displacement based design (DDBD) approach for different types of reinforced concrete structural systems including single moment-resisting, dual wall-frame and dual steel-braced systems. In this methodology, the displacement profile is calculated and the equivalent single degree of freedom system is then modeled considering the damping characteristics of each member. Having calculated the effective period and secant stiffness of the structure, the base shear is obtained, based on which the design process can be carried out. For each system three frames are designed using DDBD approach. The frames are then analyzed using nonlinear time-history analysis with 7 earthquake accelerograms and the damage index is investigated through lateral drift profile of the models. Results of the analyses and comparison of the nonlinear time-history analysis results indicate efficiency of the DDBD approach for different reinforced concrete structural systems.

Influence of steel-concrete interaction in dissipative zones of frames: I - Experimental study

  • Ciutina, Adrian;Dubina, Dan;Danku, Gelu
    • Steel and Composite Structures
    • /
    • v.15 no.3
    • /
    • pp.299-322
    • /
    • 2013
  • In the case of seismic-resistant composite dual moment resisting and eccentrically braced frames, the current design practice is to avoid the disposition of shear connectors in the expected plastic zones, and consequently to consider a symmetric moment or shear plastic hinges, which occur only in the steel beam or link. Even without connectors, the real behaviour of the hinge may be different from the symmetric assumption, since the reinforced concrete slab is connected to the steel element close to the hinge locations, and also due to contact friction between the concrete slab and the steel element. The paper presents the results and conclusions of experimental tests on composite portal eccentrically braced frames and beam-to-column moment-resisting joints, carried out within the CEMSIG Research Centre of the Politehnica University of Timisoara, in order to check the validity of the assumption stated above. Reference steel and composite specimens with and without connectors in the plastic zones have been tested under monotonic and cyclic seismic type loading.

Experimental and numerical investigation on RC moment-Resisting frames retrofitted with NSD yielding dampers

  • Esfandiari, J.;Zangeneh, E.;Esfandiari, S.
    • Advances in concrete construction
    • /
    • v.13 no.4
    • /
    • pp.339-347
    • /
    • 2022
  • Retrofitting in reinforced concrete structures has been one of the most important research topics in recent years. There are several methods for retrofitting RC moment-resisting frames. the most important of which is the use of steel bracing systems with yielding dampers. With a proper design of yielding dampers, the stiffness of RC frame systems can be increased to the required extent so that the ductility of the structure is not significantly reduced. In the present study, two experimental samples of a one-third scale RC moment-resisting frame were loaded in the laboratory. In these experiments, the retrofitting effect of RC frames was investigated using Non-uniform Slit Dampers (NSDs). Based on the experimental results of the samples, seismic parameters, i.e., stiffness, ductility, ultimate strength, strength reduction coefficient, and energy dissipation capacity, were compared. The results demonstrated that the retrofitted frame had very significant growth in terms of stiffness, ultimate strength, and energy dissipation capacity. Although the strength reduction factor and ductility decreased in the retrofitted sample. In general, the behavior of the frame with NSDs was evaluated better than the bare frame.