• Title/Summary/Keyword: reinforced concrete frame structures

Search Result 391, Processing Time 0.022 seconds

Confinement effect on the behavior factor of dual reinforced concrete moment-resisting systems with shear walls

  • Alireza Habibi;Mehdi Izadpanah;Yaser Rahmani
    • Structural Engineering and Mechanics
    • /
    • v.85 no.6
    • /
    • pp.781-791
    • /
    • 2023
  • Lateral pressure plays a significant role in the stress-strain relationship of compressed concrete. Concrete's internal cracking resistance, ultimate strain, and axial strength are improved by confinement. This phenomenon influences the nonlinear behavior of reinforced concrete columns. Utilizing behavior factors to predict the nonlinear seismic responses of structures is prevalent in seismic codes, and this factor plays a vital role in the seismic responses of structures. This study aims to evaluate the confining action on the behavior factor of reinforced concrete moment resisting frames (RCMRFs) with shear walls (SWRCMRFs). To this end, a diverse range of mid-rise SW-RCMRFs was initially designed based on the Iranian national building code criteria. Second, the stress-strain curve of each element was modeled twice, both with and without the confinement phenomenon. Each frame was then subjected to pushover analysis. Finally, the analytical behavior factors of these frames were computed and compared to the Iranian seismic code behavior factor. The results demonstrate that confining action increased the behavior factors of SW-RCMRFs by 7-12%.

Pushover Tests of 1 : 5 Scale 3-Story Reinforced Concrete Frames (1 : 5 축소 3층 철근콘크리트 골조의 횡방향 가력실험)

  • 이한선;우성우;허윤섭;송진규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.529-536
    • /
    • 1999
  • The objective of the research stated herein is to observe th elastic and inelastic behaviors and ultimate capacity of 1 : 5 scale 3-story reinforced concrete frame. Pushover tests were performed to 1:5 scale 3-story reinforced concrete frames without and with infilled masonry. To simulate the earthquake effect, the lateral force distribution was maintained to be an inverted triangle by using the whiffle tree. From the results of tests, the relations between the total lateral load and the roof drift, the distribution of column shears, the relation between story shear and story drift, and the angular rotations at the critical portions of structures were obtained. The effects of infilled masonry are investigated with regards to the stiffness, strength, and ductility of structures. Final collapse modes of structures with and without infilled masonry are compared.

  • PDF

Modeling of RC Frame Buildings for Progressive Collapse Analysis

  • Petrone, Floriana;Shan, Li;Kunnath, Sashi K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.1
    • /
    • pp.1-13
    • /
    • 2016
  • The progressive collapse analysis of reinforced concrete (RC) moment-frame buildings under extreme loads is discussed from the perspective of modeling issues. A threat-independent approach or the alternate path method forms the basis of the simulations wherein the extreme event is modeled via column removal scenarios. Using a prototype RC frame building, issues and considerations in constitutive modeling of materials, options in modeling the structural elements and specification of gravity loads are discussed with the goal of achieving consistent models that can be used in collapse scenarios involving successive loss of load-bearing columns at the lowest level of the building. The role of the floor slabs in mobilizing catenary action and influencing the progressive collapse response is also highlighted. Finally, an energy-based approach for identifying the proximity to collapse of regular multi-story buildings is proposed.

Height-thickness ratio on axial behavior of composite wall with truss connector

  • Qin, Ying;Shu, Gan-Ping;Zhou, Xiong-Liang;Han, Jian-Hong;He, Yun-Fei
    • Steel and Composite Structures
    • /
    • v.30 no.4
    • /
    • pp.315-325
    • /
    • 2019
  • Double skin composite walls offer structural and economic merits over conventional reinforced concrete counterparts in terms of higher capacity, greater stiffness, and better ductility. This paper investigated the axial behavior of double skin composite walls with steel truss connectors. Full-scaled tests were conducted on three specimens with different height-to-thickness ratios. Test results were evaluated in terms of failure mode, load-axial displacement response, buckling loading, axial stiffness, ductility, strength index, load-lateral deflection, and strain distribution. The test data were compared with AISC 360 and Eurocode 4 and it was found that both codes provided conservative predictions on the safe side.

Simulation of experiments on RC frames strengthened with dissipative steel links

  • Georgiadi-Stefanidi, Kyriaki;Mistakidis, Euripidis;Stylianidis, Kosmas Athanasios
    • Advances in concrete construction
    • /
    • v.1 no.3
    • /
    • pp.253-272
    • /
    • 2013
  • The use of steel bracing systems is a popular method for the strengthening of existing reinforced concrete (RC) frames and may lead to a substantial increase of both strength and stiffness. However, in most retrofitting cases, the main target is the increase of the energy dissipation capacity. This paper studies numerically the efficiency of a specific strengthening methodology which utilizes a steel link element having a cross-section of various shapes, connected to the RC frame through bracing elements. The energy is dissipated through the yielding of the steel link element. The case studied is a typical one bay, single-storey RC frame, constructed according to older code provisions, which is strengthened through two different types of link elements. The presented numerical models are based on tests which are simulated in order to gain a better insight of the behaviour of the strengthened structures, but also in order to study the effects of different configurations for the link element. The behaviour of the strengthened frames is studied with respect to the one of the original bare frame. Moreover, the numerically obtained results are compared to the experimentally obtained ones, in order to verify the effectiveness of the applied simulation methodology.

Seismic behavior of non-seismically designed reinforced concrete frame structure

  • Nguyen, Xuan-Huy;Nguyen, Huy Cuong
    • Earthquakes and Structures
    • /
    • v.11 no.2
    • /
    • pp.281-295
    • /
    • 2016
  • This paper presents a study on a non-seismically designed reinforced concrete (RC) frame structure. The structure was a existing three-story office building constructed according to the 1990s practice in Vietnam. The 1/3 scaled down versions of structure was tested on a shake table to investigate the seismic performance of this type of construction. It was found that the inter-story drift and the overall behavior of structure meet the requirements of the actual seismic design codes. Then, nonlinear time history analyses are carried out using the fiber beam- column elements. The comparison between the experimental and simulation results shows the performance of the time history analysis models.

Damage-Based Seismic Performance Evaluation of Reinforced Concrete Frames

  • Heo, YeongAe;Kunnath, Sashi K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.3
    • /
    • pp.175-182
    • /
    • 2013
  • A damage-based approach for the performance-based seismic assessment of reinforced concrete frame structures is proposed. A new methodology for structural damage assessment is developed that utilizes response information at the material level in each section fiber. The concept of the damage evolution is analyzed at the section level and the computed damage is calibrated with observed experimental data. The material level damage parameter is combined at the element, story and structural level through the use of weighting factors. The damage model is used to compare the performance of two typical 12-story frames that have been designed for different seismic requirements. A series of nonlinear time history analyses is carried out to extract demand measures which are then expressed as damage indices using the proposed model. A probabilistic approach is finally used to quantify the expected seismic performance of the building.

Seismic behavior of steel frames with replaceable reinforced concrete wall panels

  • Wu, Hanheng;Zhou, Tianhua;Liao, Fangfang;Lv, Jing
    • Steel and Composite Structures
    • /
    • v.22 no.5
    • /
    • pp.1055-1071
    • /
    • 2016
  • The paper presents an innovative steel moment frame with the replaceable reinforced concrete wall panel (SRW) structural system, in which the replaceable concrete wall can play a role to increase the overall lateral stiffness of the frame system. Two full scale specimens composed of the steel frames and the replaceable reinforced concrete wall panels were tested under the cyclic horizontal load. The failure mode, load-displacement response, deformability, and the energy dissipation capacity of SRW specimens were investigated. Test results show that the two-stage failure mode is characterized by the sequential failure process of the replaceable RC wall panel and the steel moment frame. It can be found that the replaceable RC wall panels damage at the lateral drift ratio greater than 0.5%. After the replacement of a new RC wall panel, the new specimen maintained the similar capacity of resisting lateral load as the previous one. The decrease of the bearing capacity was presented between the two stages because of the connection failure on the top of the replaceable RC wall panel. With the increase of the lateral drift, the percentage of the lateral force and the overturning moment resisted by the wall panel decreased for the reason of the reduction of its lateral stiffness. After the failure of the wall panel, the steel moment frame shared almost all the lateral force and the overturning moment.

Automated Seismic Design Method for Reinforced Concrete Structures (철근 콘트리트 구조물의 전산에 의한 내진설계법)

  • 정영수;전준태;김세열
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.3
    • /
    • pp.111-119
    • /
    • 1991
  • Most of the conventional aseismic design methods for reinforced concrete structures, based on the strong¬column weak-beam design concept, do not necessarily the state of damage distribution over the entire frame. This paper introduces a seismic damage-controlled design method for RC frames which aim at individual member damage indices. Three design parameters, namely the longitudinal steel ratio, the confinement steel ratio and the frame member depth, were studied for their influence on the frame response to an earthquake. The usefulness of this design method will be demonstrated with a three-bay four-story building frame so that, on the one hand, the method will reduce the damage as measured by the global damage index under the same earthquake and, on the other hand, will lead to a larger capacity enabling stronger earthquakes to be accom¬odated .

Seismic evaluation and retrofitting of reinforced concrete buildings with base isolation systems

  • Vasiliadis, Lazaros K.
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.293-311
    • /
    • 2016
  • A parametric study on the nonlinear seismic response of isolated reinforced concrete structural frame is presented. Three prototype frames designed according to the 1954 Hellenic seismic code, with number of floor ranging from 1 to 3 were considered. These low rise frames are representative of many existing reinforced concrete buildings in Greece. The efficacy of the implementation of both lead rubber bearings (LRB) and friction pendulum isolators (FPI) base isolation systems were examined. The selection of the isolation devices was made according to the ratio $T_{is}/T_{fb}$, where Tis is the period of the base isolation system and $T_{bf}$ is the period of the fixed-base building. The main purpose of this comprehensive study is to investigate the effect of the isolation system period on the seismic response of inadequately designed low rise buildings. Thus, the implementation of isolation systems which correspond to the ratio $T_{is}/T_{fb}$ that values from 3 to 5 is studied. Nonlinear time history analyses were performed to investigate the response of the isolated structures using a set of three natural seismic ground motions. The evaluation of each retrofitting case was made in terms of storey drift and storey shear force while in view of serviceability it was made in terms of storey acceleration. Finally, the maximum developed displacements and the residual displacements of the isolation systems are presented.