• 제목/요약/키워드: reinforced concrete frame structures

검색결과 384건 처리시간 0.023초

Experimental study on mechanical performances of lattice steel reinforced concrete inner frame with irregular section columns

  • Xue, Jianyang;Gao, Liang;Liu, Zuqiang;Zhao, Hongtie;Chen, Zongping
    • Steel and Composite Structures
    • /
    • 제16권3호
    • /
    • pp.253-267
    • /
    • 2014
  • Based on the test on a 1/2.5-scaled model of a two-bay and three-story inner frame composed of reinforced concrete beams and lattice steel reinforced concrete (SRC) irregular section columns under low cyclic reversed loading, the failure process and the features of the frame were observed. The subsequence of plastic hinges of the structure, the load-displacement hysteresis loops and the skeleton curve, load bearing capacity, inter-story drift ratio, ductility, energy dissipation and stiffness degradation were analyzed. The results show that the lattice SRC inner frame is a typical strong column-weak beam structure. The hysteresis loops are spindle-shaped, and the stiffness degradation is insignificant. The elastic-plastic inter-story deformation capacity is high. Compared with the reinforced concrete frame with irregular section columns, the ductility and energy dissipation of the structure are better. The conclusions can be referred to for seismic design of this new kind of structure.

Behavior factors for mixed reinforced concrete wall and buckling restrained braced frame

  • Hamid Beiraghi;Behdad Abbaspour
    • Structural Engineering and Mechanics
    • /
    • 제86권2호
    • /
    • pp.277-290
    • /
    • 2023
  • A supplementary reinforced concrete wall can be used to improve the seismic behavior of a buckling restrained braced frame as a mixed system. In such a novel system, the total lateral force is resisted by the combination of the RC wall system and the BRBF. There is not enough research on the response modification factor of such a mixed system. This paper investigates the response modification factor, and such relevant factors as ductility reduction factor and over strength factor for a system consisting of reinforced concrete wall and buckling restrained braced frame. To this purpose, nonlinear incremental dynamic analysis as well as static push over analysis are used for 6- to 14-story sample structures. The results show that for mixed considered systems, the mean value of response modification factor varies approximately from 7 to 9.

확률유한요소법에 의한 철근 콘크리트 프레임의 응답변화도 (Response Variability of Reinforced Concrete Frame by the Stochastic Finite Element Method)

  • 정영수
    • 전산구조공학
    • /
    • 제7권1호
    • /
    • pp.125-134
    • /
    • 1994
  • Response variability of reinforced concrete frame subjected to material property randomness has been evaluated with the aid of the finite element method. The spatial variation of Young's modulus is assumed to be a two-dimensional homogeneous stochastic process. Young's Modulus of concrete material has been investigated based on the uiaxial strength of concrete cylinder. Direct Monte Carlo simulation method is used to investigate the response of reinforced concrete frame due to the variation of Young's modulus with the Neumann expansion method and the pertubation method. The results by three analytic methods are compared with those by deterministic finite element analysis. These stochastic technique may be an efficient tool for evaluating the structural safety and reliability of reinforced concrete structures.

  • PDF

LMI based criterion for reinforced concrete frame structures

  • Chen, Tim;Kau, Dar;Tai, Y.;Chen, C.Y.J.
    • Advances in concrete construction
    • /
    • 제9권4호
    • /
    • pp.407-412
    • /
    • 2020
  • Due to the influence of nonlinearity and time-variation, it is difficult to establish an accurate model of concrete frame structures that adopt active controllers. Fuzzy theory is a relatively appropriate method but susceptible to human subjective experience to decrease the performance. To guarantee the stability of multi-time delays complex system with multi-interconnections, a delay-dependent criterion of evolved design is proposed in this paper. Based on this criterion, the sector nonlinearity which converts the nonlinear model to multiple rule base of the linear model and a new sufficient condition to guarantee the asymptotic stability via Lyapunov function is implemented in terms of linear matrix inequalities (LMI). A numerical simulation for a three-layer reinforced concrete frame structure subjected to earthquakes is demonstrated that the proposed criterion is feasible for practical applications.

Experimental study on RC frame structures strengthened by externally-anchored PC wall panels

  • Choi, Seung-Ho;Hwang, Jin-Ha;Lee, Deuck Hang;Kim, Kang Su;Zhang, Dichuan;Kim, Jong Ryeol
    • Computers and Concrete
    • /
    • 제22권4호
    • /
    • pp.383-393
    • /
    • 2018
  • Infill wall strengthening method has been widely used for seismic strengthening of deteriorated reinforced concrete (RC) frame structures with non-seismic details. Although such infill wall method can ensure sufficient lateral strengths of RC frame structures deteriorated in seismic performances with a low constructional cost, it generally requires quite cumbersome construction works due to its complex connection details between an infill wall and existing RC frame. In this study, an advanced seismic strengthening method using externally-anchored precast wall panels (EPCW) was developed to overcome the disadvantage inherent in the existing infill wall strengthening method. A total of four RC frame specimens were carefully designed and fabricated. Cyclic loading tests were then conducted to examine seismic performances of RC frame specimens strengthened using the EPCW method. Two specimens were fully strengthened using stocky precast wall panels with different connection details while one specimen was strengthened only in column perimeter with slender precast wall panels. Test results showed that the strength, stiffness, and energy dissipation capacity of RC frame specimens strengthened by EPCWs were improved compared to control frame specimens without strengthening.

Seismic vulnerability of Algerian reinforced concrete houses

  • Lazzali, Farah
    • Earthquakes and Structures
    • /
    • 제5권5호
    • /
    • pp.571-588
    • /
    • 2013
  • Many of the current buildings in Algeria were built in the past without any consideration to the requirements of the seismic code. Among these buildings, there are a large number of individual houses built in the 1980's by their owners. They are Reinforced Concrete (RC) frame structures with unreinforced hollow masonry infill walls. This buildings type experienced major damage in the 2003 (Algeria) earthquake, generated by deficiencies in the structural system. In the present study, special attention is placed upon examining the vulnerability of RC frame houses. Their situation and their general features are investigated. Observing their seismic behavior, structural deficiencies are identified. The seismic vulnerability of this type of buildings depends on several factors, such as; structural system, plan and vertical configuration, materials and workmanship. The results of the vulnerability assessment of a group of RC frame houses are presented. Using a method based on the European Macroseismic Scale EMS-98 definitions, presented in previous studies, distribution of damage is obtained.

Seismic performance of concrete frame structures reinforced with superelastic shape memory alloys

  • Alam, M. Shahria;Nehdi, Moncef;Youssef, Maged A.
    • Smart Structures and Systems
    • /
    • 제5권5호
    • /
    • pp.565-585
    • /
    • 2009
  • Superelastic Shape Memory Alloys (SMAs) are gaining acceptance for use as reinforcing bars in concrete structures. The seismic behaviour of concrete frames reinforced with SMAs is being assessed in this study. Two eight-storey concrete frames, one of which is reinforced with regular steel and the other with SMAs at the plastic hinge regions of beams and regular steel elsewhere, are designed and analyzed using 10 different ground motion records. Both frames are located in the highly seismic region of Western Canada and are designed and detailed according to current seismic design standards. The validation of a finite element (FE) program that was conducted previously at the element level is extended to the structure level in this paper using the results of a shake table test of a three-storey moment resisting steel RC frame. The ten accelerograms that are chosen for analyzing the designed RC frames are scaled based on the spectral ordinate at the fundamental periods of the frames. The behaviour of both frames under scaled seismic excitations is compared in terms of maximum inter-storey drift, top-storey drift, inter-storey residual drift, and residual top-storey drift. The results show that SMA-RC frames are able to recover most of its post-yield deformation, even after a strong earthquake.

Enhanced macro element for nonlinear analysis of masonry infilled RC frame structures

  • Mebarek Khelfi;Fouad Kehila
    • Earthquakes and Structures
    • /
    • 제25권3호
    • /
    • pp.177-186
    • /
    • 2023
  • Reinforced concrete frames with a masonry infill panel is a structural typology frequently used worldwide. In seismic cases, the interaction between the masonry infill and the RC frames constitutes one of the most complex subjects in earthquake engineering. In this work, an enhancement of an existing numerical model is proposed to improve the estimation of lateral strength and stiffness of masonry-infilled frame structures and predict their probable failure modes. The proposed improvement is based on attributing corrective coefficients to the shear strength of each diagonal shear spring of the macro element, which simulates the masonry infill. The improved numerical model is validated by comparing the results with those of the original numerical model and with experimental results available in the literature. The enhanced macro element model can be used as a powerful, accessible tool for assessing the capacity and stiffness of masonry-infilled frame structures and predicting their probable failure modes.

Probabilistic seismic demand assessment of self-centering concrete frames under mainshock-aftershock excitations

  • Song, Long L.;Guo, Tong;Shi, Xin
    • Steel and Composite Structures
    • /
    • 제33권5호
    • /
    • pp.641-652
    • /
    • 2019
  • This paper investigates the effect of aftershocks on the seismic performance of self-centering (SC) prestressed concrete frames using the probabilistic seismic demand analysis methodology. For this purpose, a 4-story SC concrete frame and a conventional reinforced concrete (RC) frame are designed and numerically analyzed through nonlinear dynamic analyses based on a set of as-recorded mainshock-aftershock seismic sequences. The peak and residual story drifts are selected as the demand parameters. The probabilistic seismic demand models of the SC and RC frames are compared, and the SC frame is found to have less dispersion of peak and residual story drifts. The results of drift demand hazard analyses reveal that the SC frame experiences lower peak story drift hazards and significantly reduced residual story drift hazards than the RC frame when subjected to the mainshocks only or the mainshock-aftershock sequences, which demonstrates the advantages of the SC frame over the RC frame. For both the SC and RC frames, the influence of as-recorded aftershocks on the drift demand hazards is small. It is shown that artificial aftershocks can produce notably increased drift demand hazards of the RC frame, while the incremental effect of artificial aftershocks on the drift demand hazards of the SC frame is much smaller. It is also found that aftershock polarity does not influence the drift demand hazards of both the SC and RC frames.

RC 라멘조에 SMART Frame 적용 시 효용성 분석 (Performance Analysis of SMART Frame Applied to RC Column-Beam Structures)

  • 조원현;임채연;장덕배;김선국
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 추계 학술논문 발표대회
    • /
    • pp.168-169
    • /
    • 2015
  • SMART Frame is a composite precast concrete structure system to deliver the advantages of both steel frame and reinforced concrete. Many studies have established to date that SMART Frame is more advantageous than conventional frame-type structure in terms of structural stability, constructability, economic viability as well as reduction of construction schedule. However, such studies have focused primarily on wall-type or flat slab-type apartment housing structures, failing to include Rahmen structures in their scope. Accordingly, this study aims to analyze the benefits of potential application of SMART Frame to RC Rahmen structures. As the structural stability and constructability of SMART Frame is already proven, this study reviews its benefits from the perspective of cost reduction. Conclusion of this study will be used subsequently in predicting the benefits of SMART Frame when it is adapted to RC Rahmen structures.

  • PDF