• Title/Summary/Keyword: reinforced concrete bridge piers

Search Result 158, Processing Time 0.025 seconds

Evaluation on Seismic Performance of Limited Ductile RC Bridge Piers by Pseudo-Dynamic Test

  • Chung, Young-Soo;Park, Jong-Heob;Cho, Chang-Beck;Seo, Joo-Won
    • KCI Concrete Journal
    • /
    • v.13 no.2
    • /
    • pp.3-9
    • /
    • 2001
  • Pseudo dynamic test for seven circular RC bridge piers has been carried out to investigate their seismic performance subjected to expected artificial earthquake motions. The objective of this experimental study is to investigate the hysteretic behavior of reinforced concrete bridge piers, which have been widely used for railway and urban transportation facilities. Important test parameters are confinement steel ratio, and input ground motion. The seismic behavior of circular RC bridge piers under artificial ground motions has been evaluated through displacement ductility, cumulative energy input, and dissipation capacity. It can be concluded that RC bridge piers designed in a limited ductile behavior provision of Eurocode 8 have been determined to show good seismic performance even under moderate artificial earthquakes.

  • PDF

A parametric study of optimum tall piers for railway bridge viaducts

  • Martinez-Martin, Francisco J.;Gonzalez-Vidosa, Fernando;Hospitaler, Antonio;Yepes, Victor
    • Structural Engineering and Mechanics
    • /
    • v.45 no.6
    • /
    • pp.723-740
    • /
    • 2013
  • This paper presents a parametric study of reinforced concrete bridge tall piers with hollow, rectangular sections. Such piers are typically used in railway construction of prestressed concrete viaducts. Twenty one different piers have been studied with seven column heights of 40, 50, 60, 70, 80, 90 and 100 m and three types of 10-span continuous viaducts, whose main span lengths are 40, 50 and 60 m. The piers studied are intermediate columns placed in the middle of the viaducts. The total number of optimization design variables varies from 139 for piers with column height of 40 m to 307 for piers with column height of 100 m. Further, the results presented are of much value for the preliminary design of the piers of prestressed concrete viaducts of high speed railway lines.

Nonlinear Finite Element Analysis of Reinforced Concrete Bridge Piers Including P-delta effects (P-delta 영향을 포함한 철근콘크리트 교각의 비선형 유한요소해석)

  • Kim, Tae-Hoon;Yoo, Young-Hwa;Choi, Jung-Ho;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.5 s.39
    • /
    • pp.15-24
    • /
    • 2004
  • The purpose of this study is to investigate the inelastic behavior and ductility capacity of reinforced concrete bridge piers including P-delta effects. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. In addition to the material nonlinear properties, the algorithm for large displacement problem that may give an additional deformation has been formulated using total Lagrangian formulation. The proposed numerical method for the inelastic behavior and ductility capacity of reinforced concrete bridge piers is verified by comparison with reliable experimental results.

Analytical fragility curves for typical Algerian reinforced concrete bridge piers

  • Kibboua, Abderrahmane;Naili, Mounir;Benouar, Djillali;Kehila, Fouad
    • Structural Engineering and Mechanics
    • /
    • v.39 no.3
    • /
    • pp.411-425
    • /
    • 2011
  • This paper illustrates the results of a seismic vulnerability study aimed to derive the fragility curves for typical Algerian reinforced concrete bridge piers using an analytical approach. Fragility curves express the probability of exceeding a certain damage state for a given ground motion intensity (e.g., PGA). In this respect, a set of 41 worldwide accelerometer records from which, 21 Algerian strong motion records are included, have been used in a non-linear dynamic response analyses to assess the damage indices expressed in terms of the bridge displacement ductility, the ultimate ductility, the cyclic loading factor and the cumulative energy ductility. Combining the damage indices defined for 5 damage rank with the ground motion indices, the fragility curves for the bridge piers were derived assuming a lognormal distribution.

Experimental Study for Seismic Performance Evaluation with Existing RC Bridge Piers (기존 실물 원형 철근콘크리트 교각의 내진 성능 평가를 위한 실험적 연구)

  • Lee, Dae-Hyoung;Kim, Hoon;Chung, Young-Soo;Lee, Jae-Hoon
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.258-265
    • /
    • 2002
  • The recent earthquakes in worldwide have caused extensive damage to highway bridge structures. In particular, it has been demonstrated that concrete columns with inadequate lateral reinforcement contributed to the catastrophic collapse of many bridges. The poor detailing of the starter bars in these columns compounded the problem of seismic deficiency. Therefore, this study has been performed to verify the effect of lap spliced longitudinal steel and confinement steel type for the seismic behavior of reinforced concrete bridge piers. Eight concrete columns were constructed with existing scale as diameter, 1.2m and height, 4.8m. 4 confinement steel types were adopted for seismic performance evaluation. All specimens were rested under inelastic cyclic loading while simultaneously subjected to a constant axial load. The longitudinal steel lap-splice is highly effective in seismic performance deterioration of reinforced concrete bridge piers.

  • PDF

Experimental Research for Seismic Performance of Circular Hollow R.C. Bridge Pier (원형중공 콘크리트 교각의 내진성능에 대한 실험적 연구)

  • 한기훈;이강균;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.671-676
    • /
    • 1999
  • Because of relatively heavy dead weight of concrete itself and unavoidable heat of massive concrete in bridge piers, circular hollow columns are widely used in Korean highway bridges. Since the occurrence of 1995 Kobe earthquake, there have been much concerns about seismic design for various infrastructures, inclusive of bridge structures. It is, however, understood that there are not much research works for nonlinear behavior of circular hollow columns subjected to earthquake motions. The ultimate of this experimental research is investigate nonlinear behavior of circular hollow reinforced concrete bridge piers under the quasi-static cyclic load, and then to enhance their ductility by strengthening the plastic hinge region with glassfiber sheets. It is concluded from quasi-static tests for 7 bridge piers that energy dissipation capacity and curvatures for a given displacement ductility factor $\{\mu}=frac{\Delta}{\Delta_y}$are about 20% higher for the seismically designed columns and about 70% higher for the retrofitted piers than the nonseismically designed columns in a conventional way.

  • PDF

Research of Plastic response by Quasi-Static Test for Circulr Hollow R.C. Bridge Pier (준정적 실험에 의한 중공원형 콘크리트 교각의 소성응답 연구)

  • 정영수
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.247-255
    • /
    • 1999
  • Because of relatively heavy dead weight of concrete itself and unavoidable heat of massive concrete in bridge piers circular hollow columns are widely used in Korean highway bridges Since the occurrence of 1995 Kobe earthquake there have been much concern about seismic design for various infrastructures inclusive of bridge structures. It is however understood that there are not much research works for nonlinear behavior circular hollow columns subjected to earthquake motions. The ultimate of this experimental research is to investigate nonlinear behavior of hollow reinforced concrete bridge piers under the quasi-static cyclic load test and than to enhance their ductility by strengthening the plastic hinge region with glassfiber sheets. It can be concluded from Quasi-static test for 7 bridge piers that approximate 4-5 ductility factor can be experimentally obtained for bridge piers nonseismically designed in conventional way which approximate 5-6 ductility factor for those seismically designed.

  • PDF

Seismic Performance Evaluation of RC Bridge Piers using Capacity Spectrum and Energy Analysis (역량스펙트럼 및 에너지분석을 이용한 RC교각의 내진성능평가에 관한 연구)

  • 정영수;박종협
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.361-367
    • /
    • 2001
  • This research aims at evaluating the seismic performance of the R/C bridge piers, which were seismically designed in accordance with the seismic provision of limited ductile behavior of Eurocode 8. Pseudo dynamic test for six(6) circular RC bridge piers has been carried out so at to investigate their seismic performance subjected to experted artificial earthquake motions. The objective of this experimental study is to investigate the hysteretic behavior of reinforced concrete bridge piers. Important test parameters are confinement steel ratio, input ground motion, etc. The seismic behavior of circular concrete piers under artificial ground motions has been evaluated through displacement ductility, energy analysis, capacity spectrum. It can be concluded that RC bridge piers designed in the seismic code of limited ductile behavior of Eurocode 8 have been determined to show good seismic performance even under expected artificial earthquakes in moderate seismicity region.

  • PDF

Seismic Performance and Retrofit of Circular Bridge Piers with Spliced Longitudinal Steel

  • Chung, Young-Soo;Lee, Jae-Hyung
    • KCI Concrete Journal
    • /
    • v.14 no.3
    • /
    • pp.130-137
    • /
    • 2002
  • It is known that lap splice in the longitudinal reinforcement of reinforced concrete(RC) bridge columns is not desirable for seismic performance, but it is sometimes unavoidable. Lap splices were practically located in the potential plastic hinge region of most bridge columns that were constructed before the adoption of the seismic design provision of Korea Bridge Design Specification on 1992. The objective of this research is to evaluate the seismic performance of reinforced concrete(RC) bridge piers with lap splicing of longitudinal reinforcement in the plastic hinge region, to develop the enhancement scheme of their seismic capacity by retrofitting with glassfiber sheets, and to develop appropriate limited ductility design concept in low or moderate seismicity region. Nine test specimens in the aspect ratio of 4 were made with three confinement ratios and three types of lap splice. Quasi-static test was conducted in a displacement-controlled way under three different axial load levels. A significant reduction of displacement ductility ratios was observed for test columns with lap splices of longitudinal steels.

  • PDF

Analytical Study on Inelastic Behavior and Ductility Capacity of Reinforced Concrete Bridge Columns with Lap Splices (주철근 겹침이음을 갖는 철근콘크리트 교각의 비탄성 거동 및 연성능력에 관한 해석적 연구)

  • 김태훈;김운학;신현목;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.931-936
    • /
    • 2003
  • Lap splices were located in the plastic hinge region of most bridge piers that were constructed before the adoption of the seismic design provision of Korea Highway Design Specification on 1992. Lap splicing is also permitted if hoops or spiral reinforcement are provided over the lap length in the current seismic design provision. But sudden brittle failure of lap splices may occur under inelastic cyclic loading. The purpose of this study is the analytical prediction of nonlinear hysteretic behavior and ductility capacity of reinforced concrete bridge piers with lap splices under cyclic loading. For this purpose, a nonlinear analysis program, RCAHEST(Reinforced Concrete Analysis in Higher Evaluation System Technology) is used. Lap spliced bar element is developed to predict behaviors of lap spliced bar. Maximum bar stress and slip of lap spliced bar is considered.

  • PDF