• Title/Summary/Keyword: reinforced buildings

Search Result 854, Processing Time 0.023 seconds

A Study on The Integrated Simulation of The Intelligent Building Control Systems and Network (인텔리전트 빌딩의 제어 시스템 및 네트워크의 통합 시뮬레이션에 관한 연구)

  • Shin, Jin-Sok;Lim, Dong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.106-108
    • /
    • 1997
  • Many new office buildings are being built as intelligent buildings equipped with building automation(HA) systems, office automation(OA) systems, and telecommunication(TC) systems in order to provide pleasant building environment and the ease of maintenance and facility management. Building control systems which are employed in intelligent buildings require varieties of advanced control systems and network systems for efficient integrated management. Design and installation of these types of advanced building control systems take a lot of efforts and also they are costly. In order to design these systems, it is necessary for the designers to have the integrated simulator including proper network system simulation. In this paper, the integrated simulator that consist of HVAC system, lighting system, elevator system, parking system based on the network system is presented. For the development of integrated simulator, AHENA which is the general-purpose software tool for a simulation with reinforced GUI is used.

  • PDF

Exploratory study on wind-adaptable design for super-tall buildings

  • Xie, Jiming;Yang, Xiao-yue
    • Wind and Structures
    • /
    • v.29 no.6
    • /
    • pp.489-497
    • /
    • 2019
  • Wind-adaptable design (WAD) provides a new method for super-tall buildings to lessen design conflicts between architectural prerequisites and aerodynamic requirements, and to increase the efficiency of structural system. Compared to conventional wind-resistant design approach, the proposed new method is to design a building in two consecutive stages: a stage in normal winds and a stage during extreme winds. In majority of time, the required structural capacity is primarily for normal wind effects. During extreme wind storms, the building's capacity to wind loads is reinforced by on-demand operable flow control measures/devices to effectively reduce the loads. A general procedure for using WAD is provided, followed by an exploratory case study to demonstrate the application of WAD.

Analysis of Shear Wall with Openings Using Super Element (슈퍼요소를 이용한 개구부를 가진 전단벽의 해석)

  • 이동근;김현수;남궁계홍
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.343-350
    • /
    • 2001
  • The box system, composed only of reinforced concrete walls and slabs, are adopted by many high-rise apartment buildings recently constructed in Korea. In the buildings, one or more relatively large openings are cut in a shear wall for functional reasons. The openings influence the internal stress of the shear wall and also the structural behavior. Therefore, it is necessary to use subdivided plate elements for accurate analysis of the box system with openings. But it would cost tremendous amount of analysis time and computer memory if the shear wall is subdivided into a finer mesh in the analysis of high-rise buildings. So, it is difficult to apply this modeling method to practical procedure. In this study, an efficient method is proposed for the efficient and accurate analysis of shear wall with openings. The proposed method used the super element and matrix condensations, fictitious beam technique.

  • PDF

Rehabilitation of hospital buildings using passive control systems

  • Syrmakezis, C.A.;Mavrouli, O.A.;Antonopoulos, A.K.
    • Smart Structures and Systems
    • /
    • v.2 no.4
    • /
    • pp.305-312
    • /
    • 2006
  • In the case of hospital buildings, where seismic design requirements are very high, existing structuresand especially those attacked by past earthquakes, appear, often, unable to fulfil the necessary safety prerequisites. In this paper, the retrofitting of hospital buildings is investigated, using alternative methods of repair and strengthening. Analysis of an existing hospital building in Patras, Greece, is performed. The load-bearing system is a reinforced concrete system. Two solutions are proposed: strengthening using concrete jackets around column and beam elements and application of viscoelastic dampers for the increase of the stability of the structure. Adequate finite element models are constructed for each case and conclusions are drawn on the efficiency of each rehabilitation method.

Vulnerability assessment and retrofit solutions of precast industrial structures

  • Belleri, Andrea;Torquati, Mauro;Riva, Paolo;Nascimbene, Roberto
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.801-820
    • /
    • 2015
  • The seismic sequence which hit the Northern Italian territory in 2012 produced extensive damage to reinforced concrete (RC) precast buildings typically adopted as industrial facilities. The considered damaged buildings are constituted by one-storey precast structures with RC columns connected to the ground by means of isolated socket foundations. The roof structural layout is composed of pre-stressed RC beams supporting pre-stressed RC floor elements, both designed as simply supported beams. The observed damage pattern, already highlighted in previous earthquakes, is mainly related to insufficient connection strength and ductility or to the absence of mechanical devices, being the connections designed neglecting seismic loads or neglecting displacement and rotation compatibility between adjacent elements. Following the vulnerabilities emerged in past seismic events, the paper investigates the seismic performance of industrial facilities typical of the Italian territory. The European building code seismic assessment methodologies are presented and discussed, as well as the retrofit interventions required to achieve an appropriate level of seismic capacity. The assessment procedure and retrofit solutions are applied to a selected case study.

Construction quality issues in performance-based wind engineering: effect of missing fasteners

  • van de Lindt, John W.;Dao, Thang Nguyen
    • Wind and Structures
    • /
    • v.13 no.3
    • /
    • pp.221-234
    • /
    • 2010
  • In light-frame wood construction, missing roof-sheathing fasteners can be a relatively common occurrence. This type of construction makes up the vast majority of the residential building stock in North America and thus their performance in high winds, including hurricanes, is of concern due to their sheer number. Construction quality issues are common in these types of structures primarily because the majority are conventionally constructed and unlike steel and reinforced concrete structures, inspection is minimal except in certain areas of the country. The concept of performance-based wind engineering (PBWE), a relatively new paradigm, relies on the assumption that building performance under wind loads can be accurately modeled. However, the discrepancy between what is designed (and modeled) and what is built (the as-built) may make application of PBWE to light-frame wood buildings quite difficult. It can be concluded from this study that construction quality must be controlled for realistic application of PBWE to light-frame wood buildings.

Development of Integrated Simulator for Intelligent Building Control Systems (인텔리젼트 빌딩 제어 시스템의 통합 시뮬레이터 개발)

  • Bae, Joong-Won;Lim, Dong-Jin;Hong, Seung-Ho;Song, Kyoo-Dong
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1199-1201
    • /
    • 1996
  • To Provide pleasant building environment and the ease of maintenance and facility management, many new office buildings are being built as intelligent buildings. Building control systems which are employed in intelligent buildings require advanced types of controllers and varieties of control schemes. Designing and installation of these types of advanced building control systems take a lot of effort and also they are costly. In order to design these systems, it is necessary for the designers to have means to analyze and estimate the performance of control systems. In this paper, the results of the simulator for HVAC and elevator system are presented as the first stage of the development of the integrated simulator. For the development of simulator, ARENA which is the general-purpose software tool for the simulation with reinforced GUI is used.

  • PDF

A Development of Partition Wall for enhenced Sound Transmission Loss and Air Tightness (차음성능과 기밀성능이 향상된 경량 간막이벽 개발)

  • 배상환;박진우;홍천화
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.855-860
    • /
    • 2001
  • As being inconvenient to apply reinforced concrete structure to high-rise buildings. it is applied steel structured system. Therefore light-weight wall systems are applied as partition wall to reduce the self-load of the building. But. the required performances of a light-weight wall are not evaluated systematically. As a field survey result. partition walls of house-to-house and room-to-room were not showed their respected performances. so the dwellers are feel so worse the quality of the whole building. In steel-structured high-rise buildings especially. occupant's dissatisfaction concerned indoor noise was high because curtain wall systems having a high air-tight performance isolate the outdoor noise making masking effect. Also to suppress indoor air movement. stact effect must be concerned. Therefore wall systems which have high performances of sound insulation and air-tightness are required in high-rise buildings.

  • PDF

Tall Building Database-assisted Design: a Review of NIST Research

  • Yeo, DongHun;Potra, Florian A.;Simiu, Emil
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.4
    • /
    • pp.265-273
    • /
    • 2019
  • The purpose of this review paper is to briefly describe main the features of novel procedures developed by the National of Standards and Technology (NIST) for the design of tall buildings. Topics considered in the paper include: the division of tasks between wind and structural engineers; the determination of wind effects with specified mean recurrence intervals by accounting for wind directionality; the risk-consistent design of structures subjected to multiple wind hazards; iterative dynamic analyses and member sizing, including the use of modern optimization approaches; and commonalities of and differences between Database-assisted Design (DAD) and Equivalent Static Wind Loads procedures. An example of the application of the DAD procedure is presented for a reinforced concrete structure. Also included in the paper is an introduction to ongoing research on the estimation of wind load factors or of augmented design mean recurrence intervals commensurate with the uncertainties in the factors that determine the wind effects.

The significance of removing shear walls in existing low-rise RC frame buildings - Sustainable approach

  • Keihani, Reza;Bahadori-Jahromi, Ali;Goodchild, Charles
    • Structural Engineering and Mechanics
    • /
    • v.71 no.5
    • /
    • pp.563-576
    • /
    • 2019
  • According to The Concrete Centre, in the UK shear walls have become an inseparable part of almost every reinforced concrete frame building. Recently, the construction industry has questioned the need for shear walls in low to mid-rise RC frame buildings. This study tried to address the issue in two stages: The first stage, the feasibility of removing shear walls in an existing design for a residential building where ETABS and CONCEPT software were used to investigate the structural performance and cost-effectiveness respectively. The second stage, the same structure was examined in various locations in the UK to investigate regional effects. This study demonstrated that the building without shear wall could provide adequate serviceability and strength within the safe range defined by Eurocodes. As a result, construction time, overall cost and required concrete volume are reduced which in turn enhance the sustainability of concrete construction.