• Title/Summary/Keyword: regulatory T cells

Search Result 335, Processing Time 0.023 seconds

Nuclear Transfer using Human CD59 and IL-18BP Double Transgenic Fetal Fibroblasts in Miniature Pigs

  • Ryu, Junghyun;Kim, Minjeong;Ahn, Jin Seop;Ahn, Kwang Sung;Shim, Hosup
    • Journal of Embryo Transfer
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • Xenotransplantation involves multiple steps of immune rejection. The present study was designed to produce nuclear transfer embryos, prior to the production of transgenic pigs, using fibroblasts carrying transgenes human complement regulatory protein hCD59 and interleukin-18 binding protein (hIL-18BP) to reduce hyperacute rejection (HAR) and cellular rejection in pig-to-human xenotransplantation. In addition to the hCD59-mediated reduction of HAR, hIL-18BP may prevent cellular rejection by inhibiting the activation of natural killer cells, activated T-cell proliferation, and induction of $IFN-{\gamma}$. Transgene construct including hCD59 and ILI-18BP was introduced into miniature pig fetal fibroblasts. After antibiotic selection of double transgenic fibroblasts, integration of the transgene was screened by PCR, and the transgene expression was confirmed by RT-PCR. Treatment of human serum did not affect the survival of double-transgenic fibroblasts, whereas the treatment significantly reduced the survival of non-transgenic fibroblasts (p<0.01), suggesting alleviation of HAR. Among 337 reconstituted oocytes produced by nuclear transfer using the double transgenic fibroblasts, 28 (15.3%) developed to the blastocyst stage. Analysis of individual embryos indicated that 53.6% (15/28) of embryos contained the transgene. The result of the present study demonstrates the resistance of hCD59 and IL-18BP double-transgenic fibroblasts against HAR, and the usefulness of the transgenic approach may be predicted by RT-PCR and cytolytic assessment prior to actual production of transgenic pigs. Further study on the transfer of these embryos to surrogates may produce transgenic clone miniature pigs expressing hCD59 and hIL-18BP for xenotransplantation.

Recent advances on next-generation probiotics linked to the gut microbiome (장내 마이크로바이옴과 차세대 프로바이오틱스 연구 현황)

  • Choi, Hak-Jong
    • Food Science and Industry
    • /
    • v.52 no.3
    • /
    • pp.261-271
    • /
    • 2019
  • Gut microbiome have recently provided evidence that the gut microbiota are capable of greatly influencing all aspects of physiology and immunology. Although a number of recent studies have shown that probiotics can modulate gut microbiota structure, the mechanism underlying this effect remains to be elucidated. In a disease state, the relative abundances of beneficial gut bacteria are generally reduced, which is restored by constant probiotic supplementation. Oral administration of probiotics improved the disease state by (1) inducing differentiation and function of regulatory T cells, (2) reducing inflammatory response, (3) modulating the gut environment, and (4) increasing the proportions of short-chain fatty acid- or beneficial metabolite-producing gut microbiota including the genera Bifidobacterium, Faecalibacterium, Akkermansia, etc. In this review, current knowledge on how probiotics can influence host's health by altering gut microbiota structure and on how probiotics and beneficial gut bacteria can be applied as next-generation probiotics will be discussed.

Comparative metabolomic analysis in horses and functional analysis of branched chain (alpha) keto acid dehydrogenase complex in equine myoblasts under exercise stress

  • Jeong-Woong, Park;Kyoung Hwan, Kim;Sujung, Kim;Jae-rung, So;Byung-Wook, Cho;Ki-Duk, Song
    • Journal of Animal Science and Technology
    • /
    • v.64 no.4
    • /
    • pp.800-811
    • /
    • 2022
  • The integration of metabolomics and transcriptomics may elucidate the correlation between the genotypic and phenotypic patterns in organisms. In equine physiology, various metabolite levels vary during exercise, which may be correlated with a modified gene expression pattern of related genes. Integrated metabolomic and transcriptomic studies in horses have not been conducted to date. The objective of this study was to detect the effect of moderate exercise on the metabolomic and transcriptomic levels in horses. In this study, using nuclear magnetic resonance (NMR) spectroscopy, we analyzed the concentrations of metabolites in muscle and plasma; we also determined the gene expression patterns of branched chain (alpha) keto acid dehydrogenase kinase complex (BCKDK), which encodes the key regulatory enzymes in branched-chain amino acid (BCAA) catabolism, in two breeds of horses, Thoroughbred and Jeju, at different time intervals. The concentrations of metabolites in muscle and plasma were measured by 1H NMR (nuclear magnetic resonance) spectroscopy, and the relative metabolite levels before and after exercise in the two samples were compared. Subsequently, multivariate data analysis based on the metabolic profiles was performed using orthogonal partial least square discriminant analysis (OPLS-DA), and variable important plots and t-test were used for basic statistical analysis. The stress-induced expression patterns of BCKDK genes in horse muscle-derived cells were examined using quantitative reverse transcription polymerase chain reaction (qPCR) to gain insight into the role of transcript in response to exercise stress. In this study, we found higher concentrations of aspartate, leucine, isoleucine, and lysine in the skeletal muscle of Jeju horses than in Thoroughbred horses. In plasma, compared with Jeju horses, Thoroughbred horses had higher levels of alanine and methionine before exercise; whereas post-exercise, lysine levels were increased. Gene expression analysis revealed a decreased expression level of BCKDK in the post-exercise period in Thoroughbred horses.

The Heterotrimeric Kinesin-2 Family Member KIF3A Directly Binds to Creatine Kinase B (Heterotrimeric kinesin-2의 KIF3A와 creatine kinase B의 결합)

  • Jeong, Young Joo;Park, Sung Woo;Seo, Mi Kyoung;Kim, Sang-Jin;Lee, Won Hee;Kim, Mooseong;Urm, Sang-Hwa;Lee, Jung Goo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.31 no.3
    • /
    • pp.257-265
    • /
    • 2021
  • Heterotrimeric kinesin-2 is a molecular motor protein of the kinesin superfamily (KIF) that moves along a microtubule plus-end directed motor protein. It consists of three different motor subunits (KIF3A, KIF3B, and KIF3C) and a kinesin-associated protein 3 (KAP3) that form a heterotrimeric complex. Heterotrimeric kinesin-2 interacts with many different binding proteins through the cargo-binding domain of the KIF3s. The activity of heterotrimeric kinesin-2 is regulated to ensure that the cargo is directed to the right place at the right time. How this regulation occurs, however, remains in question. To identify the regulatory proteins for heterotrimeric kinesin-2, we performed yeast two-hybrid screening and found a specific interaction with creatine kinase B (CKB), which is the brain isoform of cytosolic creatine kinase enzyme. CKB bound to the cargo-binding domain of KIF3A but did not interact with the KIF3B, KIF5B, or KAP3 in the yeast two-hybrid assay. The carboxyl (C)-terminal region of CKB is essential for the interaction with KIF3A. Another protein kinase, CaMKIIa, interacted with KIF3A, but GSK3a did not interact with KIF3A in the yeast two-hybrid assay. KIF3A interacted with GST-CKB-C but not with GSK-CKB-N or GST alone. When co-expressed in HEK-293T cells, CKB co-localized with KIF3A and co-immunoprecipitated with KIF3A and KIF3B but not KIF5B. These results suggest that the CKB-KIF3A interaction may regulate the cargo transport of heterotrimeric kinesin-2 under energy-compromised conditions in cells.

Discovery of UBE2I as a Novel Binding Protein of a Premature Ovarian Failure-Related Protein, FOXL2 (조기 난소 부전증 유발 관련 단백질인 FOXL2의 새로운 결합 단백질 UBE2I의 발견)

  • Park, Mira;Jung, Hyun Sook;Kim, Hyun-Lee;Pisarska, Margareta D.;Ha, Hye-Jeong;Lee, Kangseok;Bae, Jeehyeon;Ko, Jeong-Jae
    • Development and Reproduction
    • /
    • v.12 no.3
    • /
    • pp.289-296
    • /
    • 2008
  • BPES (Blepharophimosis/Ptosis/Epicanthus inversus Syndrome) is an autosomal dominant disorder caused by mutations in FOXL2. Affected individuals have premature ovarian failure (POF) in addition to small palpebral fissures, drooping eyelids, and broad nasal bridge. FOXL2 is a member of the forkhead family transcription factors. In FOXL2-deficient ovaries, granulosa cell differentiation dose not progress, leading to arrest of folliculogenesis and oocytes atresia. Using yeast two-hybrid screening of rat ovarian cDNA library with FOXL2 as bait, we found that small ubiquitin-related modifier (SUMO)-conjugating E2 enzyme UBE2I protein interacted with FOXL2 protein. UBE2I also known as UBC9 is an essential protein for processing SUMO modification. Sumoylation is a form of post-translational modification involved in diverse signaling pathways including the regulation of transcriptional activities of many transcriptional factors. In the present study, we confirmed the protein-protein interaction between FOXL2 and UBE2I in human cells, 293T, by in vivo immunoprecipitation. In addition, we generated truncated FOXL2 mutants and identified the region of FOXL2 required for its association with UBE2I using yeast-two hybrid system. Therefore, the identification of UBE2I as an interacting protein of FOXL2 further suggests a presence of novel regulatory mechanism of FOXL2 by sumoylation.

  • PDF