• Title/Summary/Keyword: regular multipartite tournaments

Search Result 3, Processing Time 0.016 seconds

CYCLES THROUGH A GIVEN SET OF VERTICES IN REGULAR MULTIPARTITE TOURNAMENTS

  • Volkmann, Lutz;Winzen, Stefan
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.3
    • /
    • pp.683-695
    • /
    • 2007
  • A tournament is an orientation of a complete graph, and in general a multipartite or c-partite tournament is an orientation of a complete c-partite graph. In a recent article, the authors proved that a regular c-partite tournament with $r{\geq}2$ vertices in each partite set contains a cycle with exactly r-1 vertices from each partite set, with exception of the case that c=4 and r=2. Here we will examine the existence of cycles with r-2 vertices from each partite set in regular multipartite tournaments where the r-2 vertices are chosen arbitrarily. Let D be a regular c-partite tournament and let $X{\subseteq}V(D)$ be an arbitrary set with exactly 2 vertices of each partite set. For all $c{\geq}4$ we will determine the minimal value g(c) such that D-X is Hamiltonian for every regular multipartite tournament with $r{\geq}g(c)$.

v-PATHS OF ARCS IN REGULAR MULTIPARTITE TOURNAMENTS

  • Yao, Tianxing;Guo, Yubao;Zhang, Kemin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.389-394
    • /
    • 1999
  • A v-path of an arc xy in a multipartite tournament T is an oriented oath in T-y which starts at x such that y does not dominate and end vertex of the path. We show that if T is a regular n-partite (n$\geq$7) tournament, then every arc of T has a v-path of length m for all m satisfying 2$\leq$m$\leq$n-2. Our result extends the corresponding result for regular tournaments, due to Alspach, Reid and Roselle [2] in 1974, to regular multipartite tournaments.

  • PDF

Weakly Complementary Cycles in 3-Connected Multipartite Tournaments

  • Volkmann, Lutz;Winzen, Stefan
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.2
    • /
    • pp.287-302
    • /
    • 2008
  • The vertex set of a digraph D is denoted by V (D). A c-partite tournament is an orientation of a complete c-partite graph. A digraph D is called cycle complementary if there exist two vertex disjoint cycles $C_1$ and $C_2$ such that V(D) = $V(C_1)\;{\cup}\;V(C_2)$, and a multipartite tournament D is called weakly cycle complementary if there exist two vertex disjoint cycles $C_1$ and $C_2$ such that $V(C_1)\;{\cup}\;V(C_2)$ contains vertices of all partite sets of D. The problem of complementary cycles in 2-connected tournaments was completely solved by Reid [4] in 1985 and Z. Song [5] in 1993. They proved that every 2-connected tournament T on at least 8 vertices has complementary cycles of length t and ${\mid}V(T)\mid$ - t for all $3\;{\leq}\;t\;{\leq}\;{\mid}V(T)\mid/2$. Recently, Volkmann [8] proved that each regular multipartite tournament D of order ${\mid}V(D)\mid\;\geq\;8$ is cycle complementary. In this article, we analyze multipartite tournaments that are weakly cycle complementary. Especially, we will characterize all 3-connected c-partite tournaments with $c\;\geq\;3$ that are weakly cycle complementary.