• Title/Summary/Keyword: regressor

Search Result 55, Processing Time 0.019 seconds

Lagged Unstable Regressor Models and Asymptotic Efficiency of the Ordinary Least Squares Estimator

  • Shin, Dong-Wan;Oh, Man-Suk
    • Journal of the Korean Statistical Society
    • /
    • v.31 no.2
    • /
    • pp.251-259
    • /
    • 2002
  • Lagged regressor models with general stationary errors independent of the regressors are considered. The regressor process is unstable having characteristic roots on the unit circle. If the order of the lag matches the number of roots on the unit circle, the ordinary least squares estimator (OLSE) is asymptotically efficient in that it has the same limiting distribution as the generalized least squares estimator (GLSE) under the same normalization. This result extends the well-known result of Grenander and Rosenblatt (1957) for asymptotic efficiency of the OLSE in deterministic polynomial and/or trigonometric regressor models to a class of models with stochastic regressors.

Dynamic Parameters Identification of Robotic Manipulator using Momentum (모멘텀을 이용한 로봇 동역학 파라미터 식별)

  • Choi, Young-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.3
    • /
    • pp.222-230
    • /
    • 2012
  • The paper presents a momentum-based regressor by using Hamiltonian dynamics representation for robotic manipulator. It has an advantage in that the proposed regressor does not require the acceleration measurement for the identification of dynamic parameters. Also, the identification algorithm is newly suggested by solving a minimization problem with constraint. The developed algorithm is easy to implement in real-time. Finally, the effectiveness of the proposed momentum-based regressor and identification method is shown through numerical simulations.

Asymptotic Properties of a Robust Estimator for Regression Models with Random Regressor

  • Chang, Sook-Hee;Kim, Hae-Kyung
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.2
    • /
    • pp.345-356
    • /
    • 1999
  • This paper deals with the problem of estimating regression coefficients in nonlinear regression model having random regressor. The sufficient conditions for consistency of the $L_1$-estimator with random regressor are given and discussed in this paper. An example is given to illustrate the application of the main results.

  • PDF

Non-regressor Based Adaptive Tracking Control of an Underwater Vehicle-mounted Manipulator (수중 선체에 장착된 로봇팔 궤적의 비귀환형 적응제어)

  • 여준구
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.7-12
    • /
    • 2000
  • This paper presents a non-regressor based adaptive control scheme for the trajectory tracking of underwater vehicle-mounted manipulator systems(UVMS). The adaptive control system includes a class of unmodeled effects is applied to the trajectory control of an UVMS. The only information required to implement this scheme ios the upper bound and lowe bound of the system parameter matrices the upper bound of unmodeled effects the number of joints the position and attitude of the vehicle and trajectory commands. The adaptive control law estimates control gains defined by the combinations of the bounded constants of system parameter matrices and of a filtered error equation. To evaluate the performance of the non-regressor based adaptive controller computer simulation was performed with a two-link planar robot model mounted on an underwater vehicle. The hydrodynamic effects acting on the manipulator are included. It is assumed that the vehicle's motion is slow and can be predicted with a proper compensator.

  • PDF

Estimating Indoor Radio Environment Maps with Mobile Robots and Machine Learning

  • Taewoong Hwang;Mario R. Camana Acosta;Carla E. Garcia Moreta;Insoo Koo
    • International journal of advanced smart convergence
    • /
    • v.12 no.1
    • /
    • pp.92-100
    • /
    • 2023
  • Wireless communication technology is becoming increasingly prevalent in smart factories, but the rise in the number of wireless devices can lead to interference in the ISM band and obstacles like metal blocks within the factory can weaken communication signals, creating radio shadow areas that impede information exchange. Consequently, accurately determining the radio communication coverage range is crucial. To address this issue, a Radio Environment Map (REM) can be used to provide information about the radio environment in a specific area. In this paper, a technique for estimating an indoor REM usinga mobile robot and machine learning methods is introduced. The mobile robot first collects and processes data, including the Received Signal Strength Indicator (RSSI) and location estimation. This data is then used to implement the REM through machine learning regression algorithms such as Extra Tree Regressor, Random Forest Regressor, and Decision Tree Regressor. Furthermore, the numerical and visual performance of REM for each model can be assessed in terms of R2 and Root Mean Square Error (RMSE).

On the Behavior of the Signed Regressor Least Mean Squares Adaptation with Gaussian Inputs (가우시안 입력신호에 대한 Signed Regressor 최소 평균자승 적응 방식의 동작 특성)

  • 조성호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.7
    • /
    • pp.1028-1035
    • /
    • 1993
  • The signed regressor (SR) algorithm employs one bit quantization on the input regressor (or tap input) in such a way that the quantized input sequences become +1 or -1. The algorithm is computationally more efficient by nature than the popular least mean square (LMS) algorithm. The behavior of the SR algorithm unfortunately is heavily dependent on the characteristics of the input signal, and there are some Inputs for which the SR algorithm becomes unstable. It is known, however, that such a stability problem does not take place with the SR algorithm when the input signal is Gaussian, such as in the case of speech processing. In this paper, we explore a statistical analysis of the SR algorithm. Under the assumption that signals involved are zero-mean and Gaussian, and further employing the commonly used independence assumption, we derive a set of nonlinear evolution equations that characterizes the mean and mean-squared behavior of the SR algorithm. Experimental results that show very good agreement with our theoretical derivations are also presented.

  • PDF

Comparison of Machine Learning-Based Greenhouse VPD Prediction Models (머신러닝 기반의 온실 VPD 예측 모델 비교)

  • Jang Kyeong Min;Lee Myeong Bae;Lim Jong Hyun;Oh Han Byeol;Shin Chang Sun;Park Jang Woo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.3
    • /
    • pp.125-132
    • /
    • 2023
  • In this study, we compared the performance of machine learning models for predicting Vapor Pressure Deficits (VPD) in greenhouses that affect pore function and photosynthesis as well as plant growth due to nutrient absorption of plants. For VPD prediction, the correlation between the environmental elements in and outside the greenhouse and the temporal elements of the time series data was confirmed, and how the highly correlated elements affect VPD was confirmed. Before analyzing the performance of the prediction model, the amount and interval of analysis time series data (1 day, 3 days, 7 days) and interval (20 minutes, 1 hour) were checked to adjust the amount and interval of data. Finally, four machine learning prediction models (XGB Regressor, LGBM Regressor, Random Forest Regressor, etc.) were applied to compare the prediction performance by model. As a result of the prediction of the model, when data of 1 day at 20 minute intervals were used, the highest prediction performance was 0.008 for MAE and 0.011 for RMSE in LGBM. In addition, it was confirmed that the factor that most influences VPD prediction after 20 minutes was VPD (VPD_y__71) from the past 20 minutes rather than environmental factors. Using the results of this study, it is possible to increase crop productivity through VPD prediction, condensation of greenhouses, and prevention of disease occurrence. In the future, it can be used not only in predicting environmental data of greenhouses, but also in various fields such as production prediction and smart farm control models.

Crop Yield and Crop Production Predictions using Machine Learning

  • Divya Goel;Payal Gulati
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.17-28
    • /
    • 2023
  • Today Agriculture segment is a significant supporter of Indian economy as it represents 18% of India's Gross Domestic Product (GDP) and it gives work to half of the nation's work power. Farming segment are required to satisfy the expanding need of food because of increasing populace. Therefore, to cater the ever-increasing needs of people of nation yield prediction is done at prior. The farmers are also benefited from yield prediction as it will assist the farmers to predict the yield of crop prior to cultivating. There are various parameters that affect the yield of crop like rainfall, temperature, fertilizers, ph level and other atmospheric conditions. Thus, considering these factors the yield of crop is thus hard to predict and becomes a challenging task. Thus, motivated this work as in this work dataset of different states producing different crops in different seasons is prepared; which was further pre-processed and there after machine learning techniques Gradient Boosting Regressor, Random Forest Regressor, Decision Tree Regressor, Ridge Regression, Polynomial Regression, Linear Regression are applied and their results are compared using python programming.

Estimation of lightweight aggregate concrete characteristics using a novel stacking ensemble approach

  • Kaloop, Mosbeh R.;Bardhan, Abidhan;Hu, Jong Wan;Abd-Elrahman, Mohamed
    • Advances in nano research
    • /
    • v.13 no.5
    • /
    • pp.499-512
    • /
    • 2022
  • This study investigates the efficiency of ensemble machine learning for predicting the lightweight-aggregate concrete (LWC) characteristics. A stacking ensemble (STEN) approach was proposed to estimate the dry density (DD) and 28 days compressive strength (Fc-28) of LWC using two meta-models called random forest regressor (RFR) and extra tree regressor (ETR), and two novel ensemble models called STEN-RFR and STEN-ETR, were constructed. Four standalone machine learning models including artificial neural network, gradient boosting regression, K neighbor regression, and support vector regression were used to compare the performance of the proposed models. For this purpose, a sum of 140 LWC mixtures with 21 influencing parameters for producing LWC with a density less than 1000 kg/m3, were used. Based on the experimental results with multiple performance criteria, it can be concluded that the proposed STEN-ETR model can be used to estimate the DD and Fc-28 of LWC. Moreover, the STEN-ETR approach was found to be a significant technique in prediction DD and Fc-28 of LWC with minimal prediction error. In the validation phase, the accuracy of the proposed STEN-ETR model in predicting DD and Fc-28 was found to be 96.79% and 81.50%, respectively. In addition, the significance of cement, water-cement ratio, silica fume, and aggregate with expanded glass variables is efficient in modeling DD and Fc-28 of LWC.

An Adaptive Iterative Learning Control and Identification for Uncertain Robotic Systems (불확실한 로봇 시스템을 위한 적응 반복 학습 제어 및 식별)

  • 최준영
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.5
    • /
    • pp.395-401
    • /
    • 2004
  • We present an AILC(Adaptive Iterative Learning Control) scheme and a sufficient condition for system parameter identification for uncertain robotic systems that perform the same tasks repetitively. It is guaranteed that the joint velocity and position asymptotically converge to the reference joint velocity and position, respectively. In addition, it is proved that a sufficient condition for parameter identification is the PE(Persistent Excitation) condition on the regressor matrix evaluated at the reference trajectory during the operation period. Since the regressor matrix on the reference trajectory can be easily computed prior to the real robot operation, the proposed algorithm provides a useful method to verify whether the parameter error converges to zero or not.