• Title/Summary/Keyword: regression-based modelling

Search Result 53, Processing Time 0.031 seconds

Application of the ANFIS model in deflection prediction of concrete deep beam

  • Mohammadhassani, Mohammad;Nezamabadi-Pour, Hossein;Jumaat, MohdZamin;Jameel, Mohammed;Hakim, S.J.S.;Zargar, Majid
    • Structural Engineering and Mechanics
    • /
    • v.45 no.3
    • /
    • pp.323-336
    • /
    • 2013
  • With the ongoing development in the computer science areas of artificial intelligence and computational intelligence, researchers are able to apply them successfully in the construction industry. Given the complexities indeep beam behaviour and the difficulties in accurate evaluation of its deflection, the current study has employed the Adaptive Network-based Fuzzy Inference System (ANFIS) as one of the modelling tools to predict deflection for high strength self compacting concrete (HSSCC) deep beams. In this study, about 3668measured data on eight HSSCC deep beams are considered. Effective input data and the corresponding deflection as output data were recorded at all loading stages up to failure load for all tested deep beams. The results of ANFIS modelling and the classical linear regression were compared and concluded that the ANFIS results are highly accurate, precise and satisfactory.

Modelling of Public Financial Security and Budget Policy Effects

  • Zaichko, Iryna;Vysotska, Maryna;Miakyshevska, Olena;Kosmidailo, Inna;Osadchuk, Nataliia
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.239-246
    • /
    • 2021
  • This article substantiates the scientific provisions for modelling the level of Ukraine's public financial security taking into account the impact of budget policy, in the process of which identified indicators of budget policy that significantly affect the public financial security and the factors of budget policy based on regression analysis do not interact closely with each other. A seven-factor regression equation is constructed, which is statistically significant, reliable, economically logical, and devoid of autocorrelation. The objective function of maximizing the level of public financial security is constructed and strategic guidelines of budget policy in the context of Ukraine's public financial security are developed, in particular: optimization of the structure of budget revenues through the expansion of the resource base; reduction of the budget deficit while ensuring faster growth rates of state and local budget revenues compared to their expenditures; optimization of debt serviced from the budget through raising funds from the sale of domestic government bonds, mainly on a long-term basis; minimization of budgetary risks and existing threats to the public financial security by ensuring long-term stability of budgets etc.

Price Monitoring Automation with Marketing Forecasting Methods

  • Oksana Penkova;Oleksandr Zakharchuk;Ivan Blahun;Alina Berher;Veronika Nechytailo;Andrii Kharenko
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.37-46
    • /
    • 2023
  • The main aim of the article is to solve the problem of automating price monitoring using marketing forecasting methods and Excel functionality under martial law. The study used the method of algorithms, trend analysis, correlation and regression analysis, ANOVA, extrapolation, index method, etc. The importance of monitoring consumer price developments in market pricing at the macro and micro levels is proved. The introduction of a Dummy variable to account for the influence of martial law in market pricing is proposed, both in linear multiple regression modelling and in forecasting the components of the Consumer Price Index. Experimentally, the high reliability of forecasting based on a five-factor linear regression model with a Dummy variable was proved in comparison with a linear trend equation and a four-factor linear regression model. Pessimistic, realistic and optimistic scenarios were developed for forecasting the Consumer Price Index for the situation of the end of the Russian-Ukrainian war until the end of 2023 and separately until the end of 2024.

Milling tool wear forecast based on the partial least-squares regression analysis

  • Xu, Chuangwen;Chen, Hualing
    • Structural Engineering and Mechanics
    • /
    • v.31 no.1
    • /
    • pp.57-74
    • /
    • 2009
  • Power signals resulting from spindle and feed motor, present a rich content of physical information, the appropriate analysis of which can lead to the clear identification of the nature of the tool wear. The partial least-squares regression (PLSR) method has been established as the tool wear analysis method for this purpose. Firstly, the results of the application of widely used techniques are given and their limitations of prior methods are delineated. Secondly, the application of PLSR is proposed. The singular value theory is used to noise reduction. According to grey relational degree analysis, sample variable is filtered as part sample variable and all sample variables as independent variables for modelling, and the tool wear is taken as dependent variable, thus PLSR model is built up through adapting to several experimental data of tool wear in different milling process. Finally, the prediction value of tool wear is compare with actual value, in order to test whether the model of the tool wear can adopt to new measuring data on the independent variable. In the new different cutting process, milling tool wear was predicted by the methods of PLSR and MLR (Multivariate Linear Regression) as well as BPNN (BP Neural Network) at the same time. Experimental results show that the methods can meet the needs of the engineering and PLSR is more suitable for monitoring tool wear.

Heat-Wave Data Analysis based on the Zero-Inflated Regression Models (영-과잉 회귀모형을 활용한 폭염자료분석)

  • Kim, Seong Tae;Park, Man Sik
    • Journal of the Korean Data Analysis Society
    • /
    • v.20 no.6
    • /
    • pp.2829-2840
    • /
    • 2018
  • The random variable with an arbitrary value or more is called semi-continuous variable or zero-inflated one in case that its boundary value is more frequently observed than expected. This means the boundary value is likely to be practically observed more than it should be theoretically under certain probability distribution. When the distribution considered is continuous, the variable is defined as semi-continuous and when one of discrete distribution is assumed for the variable, we regard it as zero-inflated. In this study, we introduce the two-part model, which consists of one part for modelling the binary response and the other part for modelling the variable greater than the boundary value. Especially, the zero-inflated regression models are explained by using Poisson distribution and negative binomial distribution. In real data analysis, we employ the zero-inflated regression models to estimate the number of days under extreme heat-wave circumstances during the last 10 years in South Korea. Based on the estimation results, we create prediction maps for the estimated number of days under heat-wave advisory and heat-wave warning by using the universal kriging, which is one of the spatial prediction methods.

Reliability based seismic fragility analysis of bridge

  • Kia, M.;Bayat, M.;Emadi, A.;Kutanaei, S. Soleimani;Ahmadi, H.R
    • Computers and Concrete
    • /
    • v.29 no.1
    • /
    • pp.59-67
    • /
    • 2022
  • In this paper, a reliability-based approach has been implemented to develop seismic analytical fragility curves of highway bridges. A typical bridge class of the Central and South-eastern United States (CSUS) region was selected. Detailed finite element modelling is presented and Incremental Dynamic Analysis (IDA) is used to capture the behavior of the bridge from linear to nonlinear behavior. Bayesian linear regression method is used to define the demand model. A reliability approach is implemented to generate the analytical fragility curves and the proposed approach is compared with the conventional fragility analysis procedure.

Prediction of Arsenic Uptake by Rice in the Paddy Fields Vulnerable to Arsenic Contamination

  • Lee, Seul;Kang, Dae-Won;Kim, Hyuck-Soo;Yoo, Ji-Hyock;Park, Sang-Won;Oh, Kyeong-Seok;Cho, Il Kyu;Moon, Byeong-Churl;Kim, Won-Il
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.2
    • /
    • pp.115-126
    • /
    • 2017
  • There is an increasing concern over arsenic (As) contamination in rice. This study was conducted to develope a prediction model for As uptake by rice based on the physico-chemical properties of soil. Soil and brown rice samples were collected from 46 sites in paddy fields near three different areas of closed mines and industrial complexes. Total As concentration, soil pH, Al oxide, available phosphorus (avail-P), organic matter (OM) content, and clay content in the soil samples were determined. Also, 1.0 N HCl, 1.0 M $NH_4NO_3$, 0.01 M $Ca(NO_3)_2$, and Mehlich 3 extractable-As in the soils were measured as phytoavailable As concentration in soil. Total As concentration in brown rice samples was also determined. Relationships among As concentrations in brown rice, total As concentrations in soils, and selected soil properties were as follows: As concentration in brown rice was negatively correlated with soil pH value, where as it was positively correlated with Al oxide concentration, avail-P concentration, and OM content in soil. In addition, the concentration of As in brown rice was statistically correlated only with 1.0 N HCl-extractable As in soil. Also, using multiple stepwise regression analysis, a modelling equation was created to predict As concentration in brown rice as affected by selected soil properties including soil As concentration. Prediction of As uptake by rice was delineated by the model [As in brown rice = 0.352 + $0.00109^*$ HCl extractable As in soil + $0.00002^*$ Al oxide + $0.0097^*$ OM + $0.00061^*$ avail-P - $0.0332^*$ soil pH] ($R=0.714^{***}$). The concentrations of As in brown rice estimated by the modelling equation were statistically acceptable because normalized mean error (NME) and normalized root mean square error (NRMSE) values were -0.055 and 0.2229, respectively, when compared with measured As concentration in the plant.

Data-Driven Modelling of Damage Prediction of Granite Using Acoustic Emission Parameters in Nuclear Waste Repository

  • Lee, Hang-Lo;Kim, Jin-Seop;Hong, Chang-Ho;Jeong, Ho-Young;Cho, Dong-Keun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.1
    • /
    • pp.75-85
    • /
    • 2021
  • Evaluating the quantitative damage to rocks through acoustic emission (AE) has become a research focus. Most studies mainly used one or two AE parameters to evaluate the degree of damage, but several AE parameters have been rarely used. In this study, several data-driven models were employed to reflect the combined features of AE parameters. Through uniaxial compression tests, we obtained mechanical and AE-signal data for five granite specimens. The maximum amplitude, hits, counts, rise time, absolute energy, and initiation frequency expressed as the cumulative value were selected as input parameters. The result showed that gradient boosting (GB) was the best model among the support vector regression methods. When GB was applied to the testing data, the root-mean-square error and R between the predicted and actual values were 0.96 and 0.077, respectively. A parameter analysis was performed to capture the parameter significance. The result showed that cumulative absolute energy was the main parameter for damage prediction. Thus, AE has practical applicability in predicting rock damage without conducting mechanical tests. Based on the results, this study will be useful for monitoring the near-field rock mass of nuclear waste repository.

Assessment through Statistical Methods of Water Quality Parameters(WQPs) in the Han River in Korea

  • Kim, Jae Hyoun
    • Journal of Environmental Health Sciences
    • /
    • v.41 no.2
    • /
    • pp.90-101
    • /
    • 2015
  • Objective: This study was conducted to develop a chemical oxygen demand (COD) regression model using water quality monitoring data (January, 2014) obtained from the Han River auto-monitoring stations. Methods: Surface water quality data at 198 sampling stations along the six major areas were assembled and analyzed to determine the spatial distribution and clustering of monitoring stations based on 18 WQPs and regression modeling using selected parameters. Statistical techniques, including combined genetic algorithm-multiple linear regression (GA-MLR), cluster analysis (CA) and principal component analysis (PCA) were used to build a COD model using water quality data. Results: A best GA-MLR model facilitated computing the WQPs for a 5-descriptor COD model with satisfactory statistical results ($r^2=92.64$,$Q{^2}_{LOO}=91.45$,$Q{^2}_{Ext}=88.17$). This approach includes variable selection of the WQPs in order to find the most important factors affecting water quality. Additionally, ordination techniques like PCA and CA were used to classify monitoring stations. The biplot based on the first two principal components (PCs) of the PCA model identified three distinct groups of stations, but also differs with respect to the correlation with WQPs, which enables better interpretation of the water quality characteristics at particular stations as of January 2014. Conclusion: This data analysis procedure appears to provide an efficient means of modelling water quality by interpreting and defining its most essential variables, such as TOC and BOD. The water parameters selected in a COD model as most important in contributing to environmental health and water pollution can be utilized for the application of water quality management strategies. At present, the river is under threat of anthropogenic disturbances during festival periods, especially at upstream areas.

Applications of the ANFIS and LR in the prediction of strain in tie section of concrete deep beams

  • Mohammadhassani, Mohammad;Nezamabadi-pour, Hossein;Jameel, Mohammed;Garmasiri, Karim
    • Computers and Concrete
    • /
    • v.12 no.3
    • /
    • pp.243-259
    • /
    • 2013
  • Recent developments in Artificial Intelligence (AI) and computational intelligence have made it viable in the construction industry and structural analysis. This study usesthe Adaptive Network-based Fuzzy Inference System (ANFIS) as a modelling tool to predict the strain in tie section for High Strength Self Compacting Concrete (HSSCC) deep beams. 3773 experimental data were collected. The input data andits corresponding strains in tie section as output data were recorded at all loading stages. Results from ANFIS are compared with the classical linear regression (LR). The comparison shows that the ANFIS's results are highly accurate, precise and satisfactory.