Acknowledgement
Supported by : Natural Science Foundation of Gansu Province
References
- Chen, J.C. (2004), 'A multiple-regression model for monitoring tool wear with a dynamometer in milling operations', Int. J. Technol. Studies, 30(4), 71-77
- Dimla, D.E. (2002), 'The correlation of vibration signal features to cutting tool wear in a metal turning operation', J. Mater. Process. Tech., 19(10), 705-713 https://doi.org/10.1007/s001700200080
- Dragos, A. (2003), 'Tool condition monitoring in broaching', Int. J. Wear, 254(3), 370-382 https://doi.org/10.1016/S0043-1648(03)00003-6
- Erdogmus, D. (2004), 'Minimax mutual information approach for independent component analysis', Neural Comput., 16(6), 1235-1252 https://doi.org/10.1162/089976604773717595
- Ertunc, M.H. and Loparo, A.K. (2001), 'Tool wear condition monitoring in drilling operations using hidden Markov models (HMPs)', Int. J. Mach. Tool Manu., 41, 1363-1384 https://doi.org/10.1016/S0890-6955(00)00112-7
- Kamarthi, S.V. and Kumara, S.R.T. (2000), 'Flank wear estimation in turning through wavelet representation of acoustic emission signals', J. Manuf. Sci. E. - T. ASME., 122(1), 12-19 https://doi.org/10.1115/1.538886
- Kopac, J. and Sali, S. (2001), 'Tool wear monitoring during the turning process', J. Mater. Process. Tech., 113(1), 312-316 https://doi.org/10.1016/S0924-0136(01)00621-5
- Liangyue Cao. (1997), 'Practical method for determining the minimum embedding dimension of a scalar time series', Int. J. Phys. D, 110(1), 43-50 https://doi.org/10.1016/S0167-2789(97)00118-8
- Mannan, M.A. and Kassim, A. (2000), 'Application of image and sound analysis techniques to monitor the condition of cutting tools', Pattern. Recogn. Lett., 21(11), 969-979 https://doi.org/10.1016/S0167-8655(00)00050-7
- Packard, N.H. (1980), 'Geometry from a time series', Int. J. Phys. Rev., 45, 712-716 https://doi.org/10.1103/PhysRevLett.45.712
- Palanisamy, P. and Rajendran, I. (2007), 'Prediction of tool wear using regression and ANN models in endmilling operation', Int. J. Adv. Manuf. Tech., 1433-3015 https://doi.org/10.1007/s00170-007-0948-5
- Shao, H. and Wang, H.L. (2004), “A cutting power model for tool wear monitoring in milling”, Int. J. Mach. Tool. Manu., 44(14), 1503-1509 https://doi.org/10.1016/j.ijmachtools.2004.05.003
- Srinivasa, P. (2002), 'Acoustic emission analysis for tool wear monitoring in face milling', Int. J. Prod. Res., 40(5), 1081-1093 https://doi.org/10.1080/00207540110107534
- Tang, Q.Y. (2002), 'Practical statistic analysis and DPS data processing system', Science Press, Beijing
- Wang, H.L. and Shao, H. (2003), 'On-line tool breakage monitoring in turning', J. Mater. Process. Tech., 139(1), 237-242 https://doi.org/10.1016/S0924-0136(03)00227-9
- Wang, H.W. (2005), 'The partial least-squares regression method and application', National Industry Press, Beijing
- Wang, S.B. and Cao, Y.D. (2005), 'Deformation measurements using mutual information : Principle and applications', Int. J. Optic. Laser. Eng., 43(7), 895-903 https://doi.org/10.1016/j.optlaseng.2004.09.007
- Xu, C.G. and Wang, X.Y. (2006), 'New approach on monitoring cutting tool states by motor current', J. Instrum. Technique Sensor, 32(4), 34-40
- Xu, C.W. (2003), 'Design and research for tool wear monitoring', Harbin Inst. Tech., 35(1), 76-80
- Xu, C.W. and Chen, H.L. (2007), 'A research of tool wear recognizing based on wavelet packet pretreated and neural network', The International Journal of System Design and Dynamics, JPN Soc. Mech. Eng., 1(4), 760-770 https://doi.org/10.1299/jsdd.1.760
Cited by
- The concept and progress of intelligent spindles: A review vol.112, 2017, https://doi.org/10.1016/j.ijmachtools.2016.10.005
- Milling Tool Wear Identification Using Information Fusion vol.496-500, pp.1662-7482, 2014, https://doi.org/10.4028/www.scientific.net/AMM.496-500.1681