Journal of the Korean Society for Precision Engineering
/
v.21
no.6
/
pp.52-59
/
2004
Recently the high speed end-milling processing is demanded the high-precise technique with good surface roughness and rapid time in aircraft, automobile part and molding industry. The working factors of high speed end-milling has an effect on surface roughness of cutting surface. Therefore this study was carried out to analyze the working factors to get the optimum surface roughness by design of experiment. From this study, surface roughness have an much effect according to priority on distance of cut, feed rate, revolution of spindle and depth of cut. By design of experiment, it is effectively represented shape characteristics of surface roughness in high speed end-milling. And determination($R^2$) coefficient of regression equation had a satisfactory reliability of 76.3% and regression equation of surface roughness is made by regression analysis.
Proceedings of the Computational Structural Engineering Institute Conference
/
1992.10a
/
pp.23-28
/
1992
The ultimate capacity of end-plate connection is investigated through nonlinear finite element analysis. The example models are divided into stiffened case and unstiffened one. The refined finite element models are analyzed by utilizing a general purpose structural analysis computer program ADINA and the moment-rotation relationships of the connection are determined. The results are compared with the regression equation deduced by Krishnamurthy. It is planned to deduce a bilinear regression equation through a parametric study on various dimensions of the connection.
This paper include the hydrometeorological analyses of evapotranspiration which is import factor concerning the estimate of water budgest over a certain basin. Evapotranspiration model mode by the multiple regression analysis between the evapotranspiration measured on various kinds of ground cover (water, bare soil and lawn) and the other meteorological elements affecting the evapotranspiration process, and the simple regression analysis between the evapo transpiration measured on each ground cover and the evapotranspiration on water and vegetables calculated from the Penman equation. It is expected that the evapotranspiration models are a very useful formulae estimating ten days amounts or a month's amounts.
Journal of the Korean Society of Manufacturing Process Engineers
/
v.15
no.4
/
pp.40-45
/
2016
Interrupted cutting has different cutting characteristics compared with continuous cutting. In interrupted cutting, the workpiece has a groove that regularly impacts the cutting tool and workpiece. Therefore, tool damage occurs rapidly, and this increases the cutting force and surface roughness. In this study, we performed interrupted cutting of carbon steel for machine structure (SM45C) using a coated carbide tool (TT7100). To predict the cutting force, we analyzed the experimental results with a regression analysis. The results were as follows: We confirmed that the factors affecting the principal force and radial force were cutting speed, depth of cut, and feed rate. From the multi-regression analysis, we deduced regression equations, and their coefficients of determination were 89.6, 89.27, and 28.27 for the principal, radial, and feed forces, respectively. This means that the regression equations were significant for the principal and radial forces but not for the feed force.
Journal of the Korean Society of Mechanical Technology
/
v.13
no.3
/
pp.113-118
/
2011
It is not easy to predict the shrinkage rate of a plastic injection mold in its design process. The shrinkage rate should be considered as one of the important performances to produce the reliable products. The shrinkage rate can be determined by using the CAE tools in the design produces. However, since the analysis can take minutes to hours, the high computational costs of performing the analysis limit their use in design optimization. Therefore this study was carried out to presume for mutual relation of analysis condition to get the optimum average shrinkage by regression analysis. The results shown that coefficient of determination of regression equation has a fine reliability over 87% and regression equation of average shrinkage is made by regression analysis.
Kim, Won Jae;Park, Chang Kyu;Son, Tran Thai;Phuc, Le Van;Lee, Hyun Jong
International Journal of Highway Engineering
/
v.19
no.5
/
pp.49-58
/
2017
PURPOSES : The objective of this study is to develop a simple regression model in designing the asphalt concrete (AC) overlay thickness using the Mechanistic-empirical pavement design guide (MEPDG) program. METHODS : To establish the AC overlay design equation, multiple regression analyses were performed based on the synthetic database for AC thickness design, which was generated using the MEPDG program. The climate in Seoul city, a modified Hirsh model for determining dynamic modulus of asphalt material, and a new damaged master curve approach were used in this study. Meanwhile, the proposed rutting model developed in Seoul city was then used to calibrate the rutting model in the MEPDG program. The AC overlay design equation is a function of the total AC thickness, the ratio of AC overlay thickness and existing AC thickness, the ratio of existing AC modulus and AC overlay modulus, the subgrade condition, and the annual average daily truck traffic (AADTT). RESULTS : The regression model was verified by comparing the predicted AC thickness, the AADTT from the model and the MEPDG. The regression model shows a correlation coefficient of 0.98 in determining the AC thickness and 0.97 in determining AADTT. In addition, the data in Seoul city was used to validate the regression model. The result shows that correlation coefficient between the predicted and measured AADTT is 0.64. This indicates that the current model is more accuracy than the previous study which showed a correlation coefficient of 0.427. CONCLUSIONS:The high correlation coefficient values indicate that the regression equations can predict the AC thickness accurately.
In this study, to determine the optimal order of the full-logged I-D-F polynomial equation, which is mainly used to calculate the probable rainfall over a temporal rainfall duration, the probable rainfall was calculated and the regression coefficients of the full-logged I-D-F polynomial equation was estimated. The optimal variable of the polynomial equation for each station was selected using a stepwise selection method, and statistical significance tests were performed through ANOVA. Using these results, the statistically appropriately calculated rainfall intensity equation for each station was presented. As a result of analyzing the variable selection outputs of the full-logged I-D-F polynomial equation at 9 stations in Gyeongbuk, the 1st to 3rd order equations at 6 stations and the incomplete 3rd order at 1 station were determined as the optimal equations. Since the 1st order equation is similar to the Sherman type equation and the 2nd order one is similar to the general type equation, it was presented as a unified form of rainfall intensity equation for convenience of use by increasing the number of independent variables. Therefore, it is judged that there is no statistical problem in considering only the 3rd order polynomial regression equation for the full-logged I-D-F.
Kim, Jonggun;Park, Youn Shik;Lee, Seoro;Shin, Yongchul;Lim, Kyoung Jae;Kim, Ki-sung
Journal of The Korean Society of Agricultural Engineers
/
v.59
no.4
/
pp.97-107
/
2017
This study is to determine the coefficients of regression equations and to select the optimal regression equation in the LOADEST model after classifying the whole study period into 5 flow conditions for 16 watersheds located in the Nakdonggang waterbody. The optimized coefficients of regression equations were derived using the gradient descent method as a learning method in Tensorflow which is the engine of machine-learning method. In South Korea, the variability of streamflow is relatively high, and rainfall is concentrated in summer that can significantly affect the characteristic analysis of pollutant loads. Thus, unlike the previous application of the LOADEST model (adjusting whole study period), the study period was classified into 5 flow conditions to estimate the optimized coefficients and regression equations in the LOADEST model. As shown in the results, the equation #9 which has 7 coefficients related to flow and seasonal characteristics was selected for each flow condition in the study watersheds. When compared the simulated load (SS) to observed load, the simulation showed a similar pattern to the observation for the high flow condition due to the flow parameters related to precipitation directly. On the other hand, although the simulated load showed a similar pattern to observation in several watersheds, most of study watersheds showed large differences for the low flow conditions. This is because the pollutant load during low flow conditions might be significantly affected by baseflow or point-source pollutant load. Thus, based on the results of this study, it can be found that to estimate the continuous pollutant load properly the regression equations need to be determined with proper coefficients based on various flow conditions in watersheds. Furthermore, the machine-learning method can be useful to estimate the coefficients of regression equations in the LOADEST model.
Objective: The purpose of this study was to compare the accuracy of stride time and stride length provided by a commercial APDM inertial sensor system (APDM) with the results of three dimensional motion capture system (3D motion) during treadmill walking. Method: Five healthy men participated in this experiment. All subjects walked on the treadmill for 3 minutes at their preferred walking speed. The 3D motion and the APDM were simultaneously used for extracting gait variables such as stride time and stride length. Mean difference and root mean squared (RMS) difference were used to compare the measured gait variables from the two measurement devices. The regression equation derived from the range of motion of the lower limb was also applied to correct the error of stride length. Results: The stride time extracted from the APDM was almost the same as that from the 3D motion (the mean difference and RMS difference were less than 0.0001 sec and 0.0085 sec, respectively). For stride length, mean difference and RMS difference were less than 0.1141 m and 0.1254 m, respectively. However, after correction of the stride length error using the derived regression equation, the mean difference and the RMS difference decreased to 0.0134 m and 0.0556 m or less, respectively. Conclusion: In this study, we confirmed the possibility of using the temporal variables provided from the APDM during treadmill walking. By applying the regression equation derived only from the range of motion provided by the APDM, the error of the spatial variable could be reduced. Although further studies are needed with additional subjects and various walking speeds, these results may provide the basic data necessary for using APDM in treadmill walking.
This study analyzed empirically the same data through SPSS statistic(regression analysis) and AMOS program(structural equation model) used for cause and effect analysis. The result of empirical analysis was as follows. The different outcome of coefficients and p-values were deducted. Especially, in the mediated effect testing, meanwhile, SPSS statistic(regression analysis) pictured mediated effect, AMOS program(structural equation model) did not picture mediated effect on the reject zone of null hypothesis(absolute t-value and C.R.-value were nearby 1.96). Eventually, this study showed that what program used determined the outcomes of coefficients and p-values(In particular, the outcomes were differentiated further in the increasing measurement error) though using the same data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.