• 제목/요약/키워드: regression algorithm

검색결과 1,065건 처리시간 0.025초

일반화된 회귀신경망과 유전자 알고리즘을 이용한 식각 마이크로 트렌치 모델링 (Modeling of etch microtrenching using generalized regression neural network and genetic algorithm)

  • 이덕우;김병환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.27-29
    • /
    • 2005
  • Using a generalized regression neural network, etch microtrenching was modeled. All neurons in the pattern layer were equipped with multi-factored spreads and their complex effects on the prediction performance were optimized by means of a genetic algorithm. For comparison, GRNN model was constructed in a conventional way. Comparison result revealed that GA-GRNN model was more accurate than GRNN model by about 30%. The microtrenching data were collected during the etching of silicon oxynitride film and the etch process was characterized by a statistical experimental design.

  • PDF

유전자 알고리즘과 일반화된 회귀 신경망을 이용한 프로모터 서열 분류 (Promoter Classification Using Genetic Algorithm Controlled Generalized Regression Neural Network)

  • 김성모;김근호;김병환
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권7호
    • /
    • pp.531-535
    • /
    • 2004
  • A new method is presented to construct a classifier. This was accomplished by combining a generalized regression neural network (GRNN) and a genetic algorithm (GA). The classifier constructed in this way is referred to as a GA-GRNN. The GA played a role of controlling training factors simultaneously. The GA-GRNN was applied to classify 4 different Promoter sequences. The training and test data were composed of 115 and 58 sequence patterns, respectively. The classifier performance was investigated in terms of the classification sensitivity and prediction accuracy. Compared to conventional GRNN, GA-GRNN significantly improved the total classification sensitivity as well as the total prediction accuracy. As a result, the proposed GA-GRNN demonstrated improved classification sensitivity and prediction accuracy over the convention GRNN.

Pliable regression spline estimator using auxiliary variables

  • Oh, Jae-Kwon;Jhong, Jae-Hwan
    • Communications for Statistical Applications and Methods
    • /
    • 제28권5호
    • /
    • pp.537-551
    • /
    • 2021
  • We conducted a study on a regression spline estimator with a few pre-specified auxiliary variables. For the implementation of the proposed estimators, we adapted a coordinate descent algorithm. This was implemented by considering a structure of the sum of the residuals squared objective function determined by the B-spline and the auxiliary coefficients. We also considered an efficient stepwise knot selection algorithm based on the Bayesian information criterion. This was to adaptively select smoothly functioning estimator data. Numerical studies using both simulated and real data sets were conducted to illustrate the proposed method's performance. An R software package psav is available.

다양한 평가 지표와 최적화 기법을 통한 오염부하 산정 회귀 모형 평가 (Evaluation of Regression Models with various Criteria and Optimization Methods for Pollutant Load Estimations)

  • 김종건;임경재;박윤식
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.448-448
    • /
    • 2018
  • In this study, the regression models (Load ESTimator and eight-parameter model) were evaluated to estimate instantaneous pollutant loads under various criteria and optimization methods. As shown in the results, LOADEST commonly used in interpolating pollutant loads could not necessarily provide the best results with the automatic selected regression model. It is inferred that the various regression models in LOADEST need to be considered to find the best solution based on the characteristics of watersheds applied. The recently developed eight-parameter model integrated with Genetic Algorithm (GA) and Gradient Descent Method (GDM) were also compared with LOADEST indicating that the eight-parameter model performed better than LOADEST, but it showed different behaviors in calibration and validation. The eight-parameter model with GDM could reproduce the nitrogen loads properly outside of calibration period (validation). Furthermore, the accuracy and precision of model estimations were evaluated using various criteria (e.g., $R^2$ and gradient and constant of linear regression line). The results showed higher precisions with the $R^2$ values closed to 1.0 in LOADEST and better accuracy with the constants (in linear regression line) closed to 0.0 in the eight-parameter model with GDM. In hence, based on these finding we recommend that users need to evaluate the regression models under various criteria and calibration methods to provide the more accurate and precise results for pollutant load estimations.

  • PDF

이송 물체의 질량 측정 속도 향샹 (Improvements of Mass Measurement Rate for Moving Objects)

  • Lee, W.G.;Kim, K.P.
    • 한국정밀공학회지
    • /
    • 제12권11호
    • /
    • pp.110-117
    • /
    • 1995
  • This study presents and algorithm and related techniques which could satisfy the important properties of check weighers and conveyor scales. The algorithm of Recursive Least Squares Regression is applied for the weighing system simulated as a dynamic model of the second order. Using the model and the algorithm, model parameters and then the mass being weighed can be determined from the step input. The performance of the algorithm was tested on a check weigher. Discussions were extended to the development of noise reduction techniques and to the lagged introduction of objects on the moving plate. It turns out that the algorithm shows several desirable features suitable for real-time signal processing with a microcomputer, which are high precision and stability in noisy environment.

  • PDF

컬러 히스토그램과 CNN 모델을 이용한 객체 추적 (Object Tracking using Color Histogram and CNN Model)

  • 박성준;백중환
    • 한국항행학회논문지
    • /
    • 제23권1호
    • /
    • pp.77-83
    • /
    • 2019
  • 본 논문에서는 컬러 히스토그램과 CNN 모델을 이용한 객체 추적 기법 알고리즘을 제안한다. CNN (convolutional neural network) 모델기반 객체 추적 알고리즘인 GOTURN (generic object tracking using regression network)의 정확도를 높이기 위해 컬러 히스토그램 기반 mean-shift 추적 알고리즘을 합성하였다. 두 알고리즘을 SVM (support vector machine)을 통해 분류하여 추적 정확도가 더 높은 알고리즘을 선택하도록 설계하였다. Mean-shift 추적 알고리즘은 객체 추적에 실패할 때 경계 박스가 큰 범위로 움직이는 경향이 있어 경계 박스의 이동거리에 제한을 두어 정확도를 향상시켰다. 또한 영상 평균 밝기, 히스토그램 유사도를 고려하여 두 알고리즘의 추적 시작 위치를 초기화하여 성능을 높였다. 결과적으로 기존 GOTURN 알고리즘보다 본 논문에서 제안한 알고리즘이 전체적으로 정확도가 1.6% 향상되었다.

단기수요예측 알고리즘 (An Algorithm of Short-Term Load Forecasting)

  • 송경빈;하성관
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권10호
    • /
    • pp.529-535
    • /
    • 2004
  • Load forecasting is essential in the electricity market for the participants to manage the market efficiently and stably. A wide variety of techniques/algorithms for load forecasting has been reported in many literatures. These techniques are as follows: multiple linear regression, stochastic time series, general exponential smoothing, state space and Kalman filter, knowledge-based expert system approach (fuzzy method and artificial neural network). These techniques have improved the accuracy of the load forecasting. In recent 10 years, many researchers have focused on artificial neural network and fuzzy method for the load forecasting. In this paper, we propose an algorithm of a hybrid load forecasting method using fuzzy linear regression and general exponential smoothing and considering the sensitivities of the temperature. In order to consider the lower load of weekends and Monday than weekdays, fuzzy linear regression method is proposed. The temperature sensitivity is used to improve the accuracy of the load forecasting through the relation of the daily load and temperature. And the normal load of weekdays is easily forecasted by general exponential smoothing method. Test results show that the proposed algorithm improves the accuracy of the load forecasting in 1996.

A customer credit Prediction Researched to Improve Credit Stability based on Artificial Intelligence

  • MUN, Ji-Hui;JUNG, Sang Woo
    • 한국인공지능학회지
    • /
    • 제9권1호
    • /
    • pp.21-27
    • /
    • 2021
  • In this Paper, Since the 1990s, Korea's credit card industry has steadily developed. As a result, various problems have arisen, such as careless customer information management and loans to low-credit customers. This, in turn, had a high delinquency rate across the card industry and a negative impact on the economy. Therefore, in this paper, based on Azure, we analyze and predict the delinquency and delinquency periods of credit loans according to gender, own car, property, number of children, education level, marital status, and employment status through linear regression analysis and enhanced decision tree algorithm. These predictions can consequently reduce the likelihood of reckless credit lending and issuance of credit cards, reducing the number of bad creditors and reducing the risk of banks. In addition, after classifying and dividing the customer base based on the predicted result, it can be used as a basis for reducing the risk of credit loans by developing a credit product suitable for each customer. The predicted result through Azure showed that when predicting with Linear Regression and Boosted Decision Tree algorithm, the Boosted Decision Tree algorithm made more accurate prediction. In addition, we intend to increase the accuracy of the analysis by assigning a number to each data in the future and predicting again.

Estimating Hydrodynamic Coefficients of Real Ships Using AIS Data and Support Vector Regression

  • Hoang Thien Vu;Jongyeol Park;Hyeon Kyu Yoon
    • 한국해양공학회지
    • /
    • 제37권5호
    • /
    • pp.198-204
    • /
    • 2023
  • In response to the complexity and time demands of conventional methods for estimating the hydrodynamic coefficients, this study aims to revolutionize ship maneuvering analysis by utilizing automatic identification system (AIS) data and the Support Vector Regression (SVR) algorithm. The AIS data were collected and processed to remove outliers and impute missing values. The rate of turn (ROT), speed over ground (SOG), course over ground (COG) and heading (HDG) in AIS data were used to calculate the rudder angle and ship velocity components, which were then used as training data for a regression model. The accuracy and efficiency of the algorithm were validated by comparing SVR-based estimated hydrodynamic coefficients and the original hydrodynamic coefficients of the Mariner class vessel. The validated SVR algorithm was then applied to estimate the hydrodynamic coefficients for real ships using AIS data. The turning circle test wassimulated from calculated hydrodynamic coefficients and compared with the AIS data. The research results demonstrate the effectiveness of the SVR model in accurately estimating the hydrodynamic coefficients from the AIS data. In conclusion, this study proposes the viability of employing SVR model and AIS data for accurately estimating the hydrodynamic coefficients. It offers a practical approach to ship maneuvering prediction and control in the maritime industry.

Algorithm for the Constrained Chebyshev Estimation in Linear Regression

  • Kim, Bu-yong
    • Communications for Statistical Applications and Methods
    • /
    • 제7권1호
    • /
    • pp.47-54
    • /
    • 2000
  • This article is concerned with the algorithm for the Chebyshev estimation with/without linear equality and/or inequality constraints. The algorithm employs a linear scaling transformation scheme to reduce the computational burden which is induced when the data set is quite large. The convergence of the proposed algorithm is proved. And the updating and orthogonal decomposition techniques are considered to improve the computational efficiency and numerical stability.

  • PDF