• Title/Summary/Keyword: regional water supply system

Search Result 91, Processing Time 0.022 seconds

Suitable Site Selection System Construction of Inter-Regional Pipeline network and Supply Facility (광역상수도 관로노선 및 수도시설의 적지선정 시스템 구출)

  • 하성룡;김주환
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1996.05a
    • /
    • pp.605-610
    • /
    • 1996
  • 광역상수도의 수도시설 및 관로시설의 적지를 선정하기 위한 시스템에서는 GIS기법을 이용하여 공간정보를 입력하고, 분석하며 적정입지를 선정할 수 있는 기초를 마련하였다. GIS를 이용한 적지선정기법을 방대한 지형정보의 종합적인 관리와 분석능력 및 시각적인 표현능력을 갖추고 있어 광역상수도의 적정노선 결정에 적합하며, 그 이용도가 점차 증가하는 추세이다. 본 연구에서는 포항시를 대상으로 GIS를 이용한 광역상수도의 수도 및 관로시설의 적지선정 시스템에 대한 타당성을 검증하였다. 수치지도는 국가기본도와 주제도중 토지이용도와 도시계획도를 작성하였다. 구축된 지형정보에 관한 기술조건을 만족하는 공간분석항목을 바탕으로 가능대안을 마련하였다. 본 연구의 결과, 기존 수도시설 및 관로시설의 적지선정 방법에 비해 개발된 시스템을 이용할 경우 많은 시간과 비용이 줄었다.

  • PDF

A Study on the Participatory Irrigation Management under Public Irrigation Management System (공적(公的)관리에서의 참여형 관개관리(PIM) 모델)

  • Lee, Sung-Hee;Kim, Tai-Cheol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.3
    • /
    • pp.13-17
    • /
    • 2011
  • There was a transition from participatory irrigation management (PIM) to public irrigation management (PubIM) in Korea when Korea Rural corporation and Community (KRC) merged with Farm Land Improvement Associations (FLIAs), which had managed 60 % of irrigation areas. While making a number of achievements, some problems occurred in the public irrigation management, such as lack of farmers' participation, increased amount of water usage, and elevating operating costs. Accordingly, this paper suggested ways to increase efficiency in water usage and reduce operating costs under the public management through the motive power of farmers participation. First, WUGs replaced the discarded water management committee should be reorganized to revive the concept of PIM in the form of autonomously reinforced one and the roles and functions of WUGs and the board of representatives should be strengthened. The member of new type of WUGs should participate in the national and regional water management committees as a stakeholder of irrigation water user. And also new type of WUGs initiates not only the management of irrigation water but also the management of irrigation water quality and non-point source pollution in the watersheds. Those additional activities of WUGs should be properly compensated. Second, subsidies (direct payments) should be provided to faithful farmers as an incentive for their labor supply. Third, water fees could be charged to large scale agriculture companies. Fourth, professional managers could be hired, management targets would be adjusted, and incentives should be offered. These efforts are expected to improve the irrigation management by encouraging farmers' participation under public system.

Development of Impact Evaluation and Diagnostic Indicators for Sinkholes

  • Lee, KyungSu;Kim, TaeHyeong
    • International Journal of Contents
    • /
    • v.14 no.3
    • /
    • pp.53-60
    • /
    • 2018
  • Based on the previous studies on sinkholes and ground subsidence conducted until date, the factors affecting the occurrence of sinkholes can be divided into natural environmental factors and human environmental factors in accordance with the purpose of the study. Furthermore, to be more specific, the human environment can be classified into the artificial type and the social type. In this study, the assessment indices for assessing risks of sinkholes and ground subsidence were developed by performing AHP analysis based on the results of the study by Lee et al. (2016), who selected the risk factors for the occurrence of sinkholes by performing Delphi analysis targeting relevant experts. Analysis showed that the artificial environmental factors were of significance in affecting the occurrence of sinkholes. Explicitly, the underground factors were found to be of importance in the natural environment, and among them, the level of underground water turned out to be an imperative influencing factor. In the artificial environment, the underground and subterranean structures exhibited similar importance, and in the underground structures, the excessive use of the underground space was found to be an important influencing factor. In the subterranean ones, the level of water leakage and the erosion of the water supply and sewage piping system were the influential factors, and in the surface, compaction failure was observed as an imperative factor. In the social environment, the regional development, and above all, the groundwater overuse were found to be important factors. In the managemental and institutional environment, the improper construction management proved to be the most important influencing factor.

Low-Flow Frequency Analysis and Drought Outlook in Water Districts Under Climate Change Scenarios : A Case Study of Gimcheon-si, Korea (기후변화 시나리오에 따른 용수구역 기반 소구역의 가뭄전망 및 갈수빈도해석 : 김천시 지역을 중심으로)

  • Kim, Jieun;Lee, Baesung;Yoo, Jiyoung;Kwon, Hyun-Han;Kim, Tae-Woong
    • Journal of Wetlands Research
    • /
    • v.23 no.1
    • /
    • pp.14-26
    • /
    • 2021
  • Increase of climate variability due to climate change has paved the way for regional drought monitoring and outlook. In particular, Gimcheon-si, Gyeongsangbuk-do, is suffering from frequent and periodic drought damage as the frequency and magnitude of drought are increasing due to climate change. For this reason, it is necessary to analyze drought characteristics for sub-districts based on water district and calculate the basic low-flow considering climate change. In this study, meteorological and hydrological drought outlook were carried out for 8 sub-districts considering the water supply system and regional characteristics of Gimcheon-si according to various climate change scenarios. In addition, the low-flow frequency analysis for the near future was also performed using the total amount of runoff and the low-flow. The overall results indicated that, meteorological droughts were found to be dangerous in the S0(1974~2019) period and hydrological droughts would be dangerous in the S2(2041~2070) period for RCP 4.5 and in S3(2071~2099) period for RCP 8.5. The results of low-flow frequency analysis indicated that future runoff would increase but drought magnitude and frequency would increase further. The results and methodology may be useful for preparing local governments' drought measures and design standards for local water resources facilities.

Development of a Diagnostic System for the Detection of the Cowpea mild mottle virus Specific Gene in Quarantine (Cowpea mild mottle virus 특이유전자 검출을 위한 검역진단시스템 개발)

  • Lee, Siwon;Lee, Jin-Young;Moon, Bo Yeong;Kim, Chang Soo;Shin, Yong-Gil;Rho, Jae-Young
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.3
    • /
    • pp.296-299
    • /
    • 2015
  • Cowpea mild mottle virus (CPMMV) has a wide range of hosts, such as the pea family and tomato. CPMMV is a non-reported virus in Korea, and is domestically designated as a controlled virus associated with plant quarantine. In this study, a rapid diagnostic method for the detection of CPMMV at quarantine sites was developed. For the development of a user-based system, the PCR compositions and conditions use existing methods of quarantine for the viruses. Two sets of RT-PCR and nested PCR were developed in this study that could be amplified from 579 → 298 dp and 638 → 252 bp, respectively. Furthermore, a sequence inserted positive control plasmid was developed, which is able to identify false-positives resulting from laboratory contamination. The findings of this study are important for the diagnosis of CPMMV in imported crops held in plant quarantine.

An Analysis of Cultural Relics Location (문화유적의 공간적 입지 유형 분석)

  • Kim, Chang-Hwan;Bae, Sun-Hak
    • Journal of the Korean association of regional geographers
    • /
    • v.12 no.5
    • /
    • pp.583-594
    • /
    • 2006
  • Relics are life traces of ancestors, and they are good data for giving an idea about space locations of that period. This study classifies relics according to their type, and for each classified group metrical analysis is carried out using GIS and triangle diagram. The criteria used for analysis of relics' locations are elevation, road accessibility and water accessibility. The analysis results show that every relic has its own distribution characteristics according to the time and the type. This means high possibility of approaching a geographical focus on relics distribution and location. While historical period was taking over prehistorical, relics locations moved from the points of great usage water supply possibility to the points of great traffic accessibility. Also, relics of the ruling class for each time period generally have good locations.

  • PDF

Application of SAD Curves in Assessing Climate-change Impacts on Spatio-temporal Characteristics of Extreme Drought Events (극한가뭄의 시공간적 특성에 대한 기후변화의 영향을 평가하기 위한 SAD 곡선의 적용)

  • Kim, Hosung;Park, Jinhyeog;Yoon, Jaeyoung;Kim, Sangdan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6B
    • /
    • pp.561-569
    • /
    • 2010
  • In this study, the impact of climate change on extreme drought events is investigated by comparing drought severity-area-duration curves under present and future climate. The depth-area-duration analysis for characterizing an extreme precipitation event provides a basis for analysing drought events when storm depth is replaced by an appropriate measure of drought severity. In our climate-change impact experiments, the future monthly precipitation time series is based on a KMA regional climate model which has a $27km{\times}27km$ spatial resolution, and the drought severity is computed using the standardized precipitation index. As a result, agricultural drought risk is likely to increase especially in short duration, while hydrologic drought risk will greatly increase in all durations. Such results indicate that a climate change vulnerability assessment for present water resources supply system is urgent.

Water Supply Alternatives for Drought by Weather Scenarios Considering Resilience: Focusing on Naju Reservoir (회복탄력성을 고려한 기상 시나리오별 가뭄 용수 공급방안: 나주호를 중심으로)

  • Park, JinHyun;Go, JeaHan;Jo, YoungJun;Jung, KyungHun;Sung, MuHong;Jung, HyoungMo;Park, HyunKyu;Yoo, SeungHwan;Yoon, KwangSik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.5
    • /
    • pp.115-124
    • /
    • 2018
  • Resilience has been widely used in various fields including design and operation of infrastructures. The resilient infrastructures not only reduce the damage scale of various disasters but also reduce the time and cost required for restoration. However, resilience rarely applied to promote efficient management of agricultural infrastructures. Recently, drought is an aggravating disaster by climate change and need countermeasures. Therefore, we tried to demonstrate evaluating measures in case of drought under consideration of resilience. This study applied the robustness-cost index (RCI) to evaluate alternative solution of the supply problem of a large agricultural reservoir under drought conditions. Four structural alternatives were selected to estimate the robustness index (RI) and the cost index (CI) to obtain the RCI values. Structural alternatives are classified into temporary measures and permanent measures. Temporary measures include the development of a tube wells and the installation of the portable pump, while the permanent measures include the installation of a pumping stations and the pumping water to the reservoir (Yeongsan River-Naju reservoir). RCI values were higher in permanent measures than those of temporary measures. Initial storage of the reservoir also affected RCI values of the drought measures. Permanent measures installation and management of early stage of the reservoir storage shortage was identified as the most resilient system.

Greenhouse Gas Reduction from Paddy by Environmentally-Friendly Intermittent Irrigation: A Review (환경 친화적인 간단관개를 통한 논에서의 온실가스 저감)

  • Choi, Joongdae;Uphoff, Norman;Kim, Jonggun;Lee, Suin
    • Journal of Wetlands Research
    • /
    • v.21 no.1
    • /
    • pp.43-56
    • /
    • 2019
  • Irrigated and flooded rice paddy contributes to the greenhouse gas emissions (GHG) that affect climate. This in turn affects the supply and reliability of the water needed for rice production. This dynamic makes current rice production methods foreseeably less sustainable over time while having other undesirable effects. Intermittent irrigation by a means of the system of rice intensification (SRI) and alternate wetting and drying (AWD) methods was reviewed to reduce global warming potential (GWP) from 29% to 90% depending on site-specific characteristics from flooded rice paddy and analyzed to be a promising option for enhancing the productivity of water as well, an increasingly constraining resource. Additional benefits associated with the SRI/AWD can be less arsenic in the grain and less degradation of water quality in the run-off from rice paddies. Adoption and expansion of intermittent irrigation of SRI/AWD may require costly public and private investments in irrigation infrastructure that can precisely make irrigation control, and the involvement and upgrading of water management agencies and farmer organizations to enhance management capabilities. Private and public collaboration as a means of earning carbon credit under the clean-development mechanism (CDM) with SRI/AWD for industries to meet as a part of their GHG emission quota as well as a social contribution and publicity program could contribute to adopt intermittent irrigation and rural investment and development. Also, inclusion of SRI and AWD in programs designed under CDM and/or in official development assistance (ODA) projects could contribute to climate-change mitigation and help to achieve UN sustainable development goals (SDGs).

A Case Study on Chlorine Dioxide Usage at a Conventional Water Treatment Plant (기존 정수장 이산화염소 시범도입 사례연구)

  • Lee, Song-Hee;Lee, Byung-Doo;Kim, Jin-Keun;Seog, Kwon-Soo;Lee, Joung-Taek
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.1
    • /
    • pp.115-119
    • /
    • 2005
  • As the regulations on DBPs are tightened, many water treatment plants (WTPs) in Korea have already introduced or will introduce enhanced coagulation, alternative disinfectants and advanced treatments such as ozonization and granular activated carbon to improve drinking water qualify. After a phenol leakage accident at the Nakdong-River in 1991, 26 WIPs in Korea introduced carbon dioxide generators, but there has been no accumulation of significant operating data. This research summarizes things that should be considered for the introduction of carbon dioxide disinfection process to WTPs based on one year operation data from A WTP that has had high concentration of DBP during a specific period in the summer. The removal efficiency of DBP was $30{\sim}40%$, but those of 2-MIB, Geosmin were less than 10%. The generation rate of $ClO_2$ by-products such as chlorite and chlorate were $70{\sim}100%$ of input dosage, but the ratios increased over time. At the same time, strong chlorine odors may be produced in the distribution system when $ClO_2$ was used with $Cl_2$ as a result of reaction between the chlorite and residual chlorine.