• Title/Summary/Keyword: regional development programme

Search Result 27, Processing Time 0.022 seconds

The Magnetic Anomaly Map of Korea (한국의 자력 이상도)

  • Park, Yeong-Sue;Rim, Hyoungrea;Lim, Mutaek;Shin, Young Hong
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.1
    • /
    • pp.29-36
    • /
    • 2019
  • Regional airborne magnetic survey is very cost-effective mapping tool. Magnetic anomaly maps have abundant information, which are an important tool for understanding the geological evolution and mineral exploration. For this reason, the governments of many countries have made significant investment in the acquisition of airborne geophysical data over many decades. KIGAM (Korea Institute of Geoscience and Mineral Resources) began nationwide airborne magnetic mapping programme in 1982, and completed in 2017. The obtained magnetic data was reprocessed and magnetic database was built in 2018. In addition, the magnetic anomaly map of Korea with a scale of 1:1,000,000 was published. In this paper, we introduced a new magnetic anomaly map of Korea through describing the changing survey parameters during data acquisitions and history of data processing.

Biodiversity Conservation and the Yellow Sea Large Marine Ecosystem Project (생물다양성 보전과 황해 광역 해양생태계 관리계획)

  • Walton, Mark
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.4
    • /
    • pp.335-340
    • /
    • 2010
  • The paper describes the objectives of Yellow Sea Large Marine Ecosystem (YSLME) project, focusing on procedural and practical aspects. YSLME is a highly productive sea yet possibly one of the most impacted large marine ecosystems, in terms of anthropogenic stressors, due the enormous coastal population. The aim of the YSLME project is the reduction of ecosystem stress through identification of the environmental problems in the Transboundary Diagnostic Analysis (TDA) that are then addressed in the Strategic Action Programme (SAP). One of the major problems found to be affecting biological diversity is habitat modification through wetland reclamation, conversion and degradation. Since the early 1900's more than 40% of intertidal wetlands have been reclaimed in Korea, and 60% of Chinese coastal wetlands have been converted or reclaimed. Damaging fishing practices, pollution and coastal eutrophication have further degraded the coastal environment reducing the biological diversity. To combat this loss, the YSLME project has mounted a public awareness campaign to raise environmental consciousness targeted at all different levels of society, from politicians at parliamentary workshops, local government officer training events, scientific conferences and involvement of scientists in the project research and reporting, to university and high school students in our visiting internship programmes and environmental camps. We have also built networks through the Yellow Sea Partnership and by liaising and working with other environmental organizations and NGOs. NGO's are recognised as important partners in the environmental conservation as they already have extensive local networks that can be lacking in international organisations. Effective links have been built with many of these NGOs through the small grants programme. Working with WWF's YSESP project and other academic and research institutions we have conducted our own biodiversity assessments that have contributed to the science-based development of the SAP for the YSLME. Our regional targets for biodiversity outlined in the SAP include: Improvements in the densities, distributions and genetic diversity of current populations of all living organisms including endangered and endemic species; Maintenance of habitats according to standards and regulations of 2007; and a reduction in the risk of introduced species. Endorsement of the SAP and its successful implementation, during the proposed second phase of the YSLEM project, will ensure that biological diversity is here to benefit future generations.

Interministerial GHS Activities and Implementation in Korea

  • Yu, Il-Je
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.06a
    • /
    • pp.240-248
    • /
    • 2005
  • To implement a globally harmonized system of classification and labeling of chemicals (GHS) in Korea, an interminsterial GHS working group involving 6 ministries established an expert working group composed of 7 experts from relevant organizations and one private consultant to prepare an officialKorean GHS version by March, 2005. As such, the translation and review of the official Korean GHS version, including annexes, started in October, 2004 and was completed on March 15, 2005. The official Korean GHS version has now been posted on the websites of the relevant ministries and organizations to solicit public opinions. The official Korean GHS version will be finalized after a public hearing scheduled forMay, 2005. Collaborative efforts as regards implementing and disseminating the GHS in Korea will be continued to avoid any confusion or duplication and for effective use of resources. The globally harmonized system of classifying and labeling chemicals (GHS) was originally adopted in 1992 at the United Nations Conference on Environment and Development (UNCED), as subsequently reflected in Agenda 21 chapter 19. The work was coordinated and managed under the auspices of the Interorganization Programme for the Sound Management of Chemicals(IOMC) Coordinating Group for the Harmonization of Chemical Classification Systems (UNCEGHS). The technical focal points for completing the work were the International Labour Organization (ILO); Organization for Economic Cooperation and Development (OECD); and United Nations Economic and Social Council's Subcommittee of Experts on the Transport of Dangerous Goods (UNSCETDG). The work was finalized in October 2002, and the World Summit on Sustainable Development in Johannesburg on 4 September 2002 encouraged countries to implement the new GHS as soon as possible with a view to having the system fully operational by 2008 (UN, 2003). Implementation has already started with pilot countries introducing the system to their national practices in different regions of the world. The GHS text, called the purple book, becameavailable as a W publication in early 2003. The GHS text, called the purple book, becameavailable as a UN publication in early 2003. The GHS system will be kept dynamic, and regularly revised and made more efficient as experience is gained in its implementation. While national or regional governments are the primary audiences for this document, it also contains sufficient context and guidance for those in industry who will ultimately be implementing the national requirements that will be introduced (UN, 2003). The Japanese government published their official Japanese GHS version, the first in Asia, in April 2004 after starting work in January 2003 based on an interministerial chemical coordination committee involving 7 ministries, including the Ministry of Foreign Affairs, Ministry of Internal Affairs and Communications, Ministry of Health, Labour, and Welfare, Ministry of Agriculture, Forestry and Fisheries, Ministry of Economy, Trade and Industry, Ministry of Land, Infrastructure, and Transport, and Ministry of Environment (MOE, 2004). Accordingly, similar to the Japanese GHS efforts, this paper presents the interministerial efforts involved in publishing the official Korean GHS version.

  • PDF

The Innovation Ecosystem and Implications of the Netherlands. (네덜란드의 혁신클러스터정책과 시사점)

  • Kim, Young-woo
    • Journal of Venture Innovation
    • /
    • v.5 no.1
    • /
    • pp.107-127
    • /
    • 2022
  • Global challenges such as the corona pandemic, climate change and the war-on-tech ensure that the demand who the technologies of the future develops and monitors prominently for will be on the agenda. Development of, and applications in, agrifood, biotech, high-tech, medtech, quantum, AI and photonics are the basis of the future earning capacity of the Netherlands and contribute to solving societal challenges, close to home and worldwide. To be like the Netherlands and Europe a strategic position in the to obtain knowledge and innovation chain, and with it our autonomy in relation to from China and the United States insurance, clear choices are needed. Brainport Eindhoven: Building on Philips' knowledge base, there is create an innovative ecosystem where more than 7,000 companies in the High-tech Systems & Materials (HTSM) collaborate on new technologies, future earning potential and international value chains. Nearly 20,000 private R&D employees work in 5 regional high-end campuses and for companies such as ASML, NXP, DAF, Prodrive Technologies, Lightyear and many others. Brainport Eindhoven has a internationally leading position in the field of system engineering, semicon, micro and nanoelectronics, AI, integrated photonics and additive manufacturing. What is being developed in Brainport leads to the growth of the manufacturing industry far beyond the region thanks to chain cooperation between large companies and SMEs. South-Holland: The South Holland ecosystem includes companies as KPN, Shell, DSM and Janssen Pharmaceutical, large and innovative SMEs and leading educational and knowledge institutions that have more than Invest €3.3 billion in R&D. Bearing Cores are formed by the top campuses of Leiden and Delft, good for more than 40,000 innovative jobs, the port-industrial complex (logistics & energy), the manufacturing industry cluster on maritime and aerospace and the horticultural cluster in the Westland. South Holland trains thematically key technologies such as biotech, quantum technology and AI. Twente: The green, technological top region of Twente has a long tradition of collaboration in triple helix bandage. Technological innovations from Twente offer worldwide solutions for the large social issues. Work is in progress to key technologies such as AI, photonics, robotics and nanotechnology. New technology is applied in sectors such as medtech, the manufacturing industry, agriculture and circular value chains, such as textiles and construction. Being for Twente start-ups and SMEs of great importance to the jobs of tomorrow. Connect these companies technology from Twente with knowledge regions and OEMs, at home and abroad. Wageningen in FoodValley: Wageningen Campus is a global agri-food magnet for startups and corporates by the national accelerator StartLife and student incubator StartHub. FoodvalleyNL also connects with an ambitious 2030 programme, the versatile ecosystem regional, national and international - including through the WEF European food innovation hub. The campus offers guests and the 3,000 private R&D put in an interesting programming science, innovation and social dialogue around the challenges in agro production, food processing, biobased/circular, climate and biodiversity. The Netherlands succeeded in industrializing in logistics countries, but it is striving for sustainable growth by creating an innovative ecosystem through a regional industry-academic research model. In particular, the Brainport Cluster, centered on the high-tech industry, pursues regional innovation and is opening a new horizon for existing industry-academic models. Brainport is a state-of-the-art forward base that leads the innovation ecosystem of Dutch manufacturing. The history of ports in the Netherlands is transforming from a logistics-oriented port symbolized by Rotterdam into a "port of digital knowledge" centered on Brainport. On the basis of this, it can be seen that the industry-academic cluster model linking the central government's vision to create an innovative ecosystem and the specialized industry in the region serves as the biggest stepping stone. The Netherlands' innovation policy is expected to be more faithful to its role as Europe's "digital gateway" through regional development centered on the innovation cluster ecosystem and investment in job creation and new industries.

MODFLOW or FEFLOW: A Case Study of Groundwater Model Selection for the Upper Waikato Catchment, New Zealand

  • Weir, Julian;Moore, Dr Catherine;Hadfield, John
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.14-14
    • /
    • 2011
  • Groundwater in the Waikatoregion is a valuable resource for agriculture, water supply, forestry and industries. The 434,000 ha study area comprises the upper Waikato River catchment from the outflow of Lake Taupo (New Zealand's largest lake) through to Lake Karapiro (a man-made hydro lake with high recreational value) (Figure 1). Water quality in the area is naturally high. However, there are indications that this quality is deteriorating as a result of land use intensification and deforestation. Compounding this concern for decision makers is the lag time between land use changes and the realisation of effects on groundwater and surface water quality. It is expected that the effects of land use changes have not yet fully manifested, and additional intensification may take decadesto fully develop, further compounding the deterioration. Consequently, Environment Waikato (EW) have proposed a programme of work to develop a groundwater model to assist managing water quality and appropriate policy development within the catchment. One of the most important and critical decisions of any modelling exercise is the choice of the modelling platform to be used. It must not inhibit future decision making and scenario exploration and needs to allow as accurate representation of reality as feasible. With this in mind, EW requested that two modelling platforms, MODFLOW/MT3DMS and FEFLOW, be assessed for their ability to deliver the long-term modelling objectives for this project. The two platforms were compared alongside various selection criteria including complexity of model set-up and development, computational burden, ease and accuracy of representing surface water-groundwater interactions, precision in predictive scenarios and ease with which the model input and output files could be interrogated. This latter criteria is essential for the thorough assessment of predictive uncertainty with third-party software, such as PEST. This paper will focus on the attributes of each modelling platform and the comparison of the two approaches against the key criteria in the selection process. Primarily due to the ease of handling and developing input files and interrogating output files, MODFLOW/MT3DMS was selected as the preferred platform. Other advantages and disadvantages of the two modelling platforms were somewhat balanced. A preliminary regional groundwater numerical model of the study area was subsequently constructed. The model simulates steady state groundwater and surface water flows using MODFLOW and transient contaminant transport with MT3DMS, focussing on nitrate nitrogen (as a conservative solute). Geological information for this project was provided by GNS Science. Professional peer review was completed by Dr. Vince Bidwell (of Lincoln Environmental).

  • PDF

Comparison of Performance and Stability Parameters for Soybean Yield (콩 수량안전성 분석방법간 비교)

  • Suk-Ha, Lee;Yong-Hwan, Ryu;Yeul-Gue, Seung;Seok-Dong, Kim;Eun-Hi, Hong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.5
    • /
    • pp.604-608
    • /
    • 1997
  • Ten selected soybean genotypes, consisting of nine from a pedigree breeding programme and one recommended variety, were evaluated in nine different locations and over two years for stability of yield performance. Variance component analysis revealed that soybean regional yield trials should be performed at more locations rather than in more years. Five stability parameters, which were coefficient of variability, regression coefficient, deviation parameter, variance component for genotype$\times$environment interaction, and ecovalence, were employed in the evaluation. Significant genotype$\times$environment interaction was present with respect to soybean yield. The highest average yield over nine locations and two years was shown in Suwon 145, which was considered to be stable in all stability statistics. In rank correlation among stability parameters, there were highly significant correlations among stability parameters derived from three Eberhart and Russell's, Plaisted's, and Wricke's methods. Due to the different ranking of genotypes by different stability parameters, a comprehensive method should be employed to identify the promising genotype as well as to characterize the relationship between genotype and environment.

  • PDF

A Stduy on the Microflora of the Han River -Taxonomy of Phytoplankton for the South Han River and Estimation of Water Pollution Levels on the Central Area of the Han River- (한강의 Microflora에 관한 연구 (제6보) -남한강의 식물성플랑크톤에 대한 분류와 한강중심수역의 수질오탁판정-)

  • 정영호
    • Journal of Plant Biology
    • /
    • v.15 no.s
    • /
    • pp.1-32
    • /
    • 1972
  • In order to utilize for the prevention and preservation of the Han River from the environmental pollution the present studies were carried out to clarify the microflora and estimation of the water pollution levels of the Han River. In addition to the above regional and seasonal fluctuation of the phytoplankton was also examined. Samples of phytoplankton were collected from 6 stations in the South Han River during the period from December, 1971 to October, 1972. The results obtained during the present studies are as follows: 1. The phytoplankton samples collected from 6 stations, Yeoju, Hajapo-ri, Yangpyeong, Daruraegi, Giduwon and Paldang were identified and classified by Engler's classification system(1954). It resulted in 2 phylum, 2 classes, 7 orders, 10 families, 29 genera, 137 species, 1 sub-species, 49 varieties, 6 forma and 2 variety-forma. The total numbers of phytoplankton identified were 195 species, of which 7 families, 27 species, 26 varieties, 4 forma and 2 variety-forma are new to Korea, that of 54 species are first described in Korea. 2. In lower area of the Han River it is found 53 species from Paldang and in middle area it is found 114 species from Giduwon, 95 species from Daruraegi, 66 species from Yangpyeong, 71 species from Hajapori and 81 species from Yeoju. In standpoint of seasonal fluctuation of phytoplankton, the total numbers of the plankton is more abundant in summer than in winter season and it shows bimodal pattern. 3. As compared with previous data which obtained from 30 stations covering estuary to upper area, both South and North Han River, during the period from 1965-1972 it is shown that 10 species of the South Han River and 11 species of the North Han River are found throughout all seasons. Among the above species two are common in both area. In the other hand it is found that 9 species in spring season and 6 species in fall season in the South Han River and 10 species in spring, 23 species in summer, 4 species in fall and 15 species in winter season in the North Han River shows their seasonal fluctuation in this area. Among the seasonal occurrence of phytoplankton 10 species were consider to be indicator for the estimation of biological water pollution levels. 4. According to Fjerdingstad's water pollution level system (1963) the total numbers of 1, 230 species which have been collected from the Han River since 1965 includes 27 species of phytoplankton as indicator; 3 species of blue-green algae, 20 species of diatom, and 4 species of green-algae. 5. With 27 indicator species new estimation of water pollution level system was arranged for water pollution in the Han River. 6. The lower part of the central area of the Han River indicates mesosaprobic. In central area of the Han River shows mesosaprobic and oligosaprobic, but predominant in mesosaporobic. And it is indicated that mesosaprobic, oligosaprobic, and polysaprobic factors mixed up in the North Han River. Compare with their water pollution level in the South and North Han River, with author's new system, it is estimated that North Han River is more polluted than South Han River. 7. The reason why North Han River is more polluted suggested that the selfpurification action was limited by their circulation speed. The rapid speed of water in the North Han River is mainly caused by their topography and water-drainage from waterpower plant. In conclusion the central area of the Han River consist of mesosaprobe zone, as a part with oligosaprobe zone. But the presence of polysaprobe zone in the North Han River gives us many problems in future for the nationa development programme and natural conservation in this area.

  • PDF