• Title/Summary/Keyword: regenerated cellulose

Search Result 62, Processing Time 0.024 seconds

Construction, Investigation and Application of TEV Protease Variants with Improved Oxidative Stability

  • Bayar, Enkhtuya;Ren, Yuanyuan;Chen, Yinghua;Hu, Yafang;Zhang, Shuncheng;Yu, Xuelian;Fan, Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.12
    • /
    • pp.1732-1740
    • /
    • 2021
  • Tobacco etch virus protease (TEVp) is a useful tool for removing fusion tags, but wild-type TEVp is less stable under oxidized redox state. In this work, we introduced and combined C19S, C110S and C130S into TEVp variants containing T17S, L56V, N68D, I77V and S135G to improve protein solubility, and S219V to inhibit self-proteolysis. The solubility and cleavage activity of the constructed variants in Escherichia coli strains including BL21(DE3), BL21(DE3)pLys, Rossetta(DE3) and Origami(DE3) under the same induction conditions were analyzed and compared. The desirable soluble amounts, activity, and oxidative stability were identified to be reluctantly favored in the TEVp. Unlike C19S, C110S and C130S hardly impacted on decreasing protein solubility in the BL21(DE3), but they contributed to improved tolerance to the oxidative redox state in vivo and in vitro. After two fusion proteins were cleaved by purified TEVp protein containing double mutations under the oxidized redox state, the refolded disulfide-rich bovine enterokinase catalytic domain or maize peroxidase with enhanced yields were released from the regenerated amorphous cellulose via affinity absorption of the cellulose-binding module as the affinity tag.

Rejection of DNA, Protein-DNA Complexes and Chromatin by Hollow Fiber Membranes

  • Higuchi, Akon;Hara, Mariko;Sato, Tetsuo;Ishikawa, Gen;Nakano, Hiroo;Satoh, Sakae
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.10a
    • /
    • pp.18-21
    • /
    • 1996
  • Virus and DNA removal in bio-drug manufacturing processes has received a great deal of attention in recent years. Removing of a virus using a membrane process is a promising method, because inactivated virus can be removed from the bio-drug and the process can be used as an additional and security inactivation after the method of general heat-inactivation of the virus in the bio-drug. The FDA and the biopharmaceutical industry have recently announced strict guidelines for impurities of virus and DNA contamination. The regulatory guidelines on residual amounts of DNA in mammalian cell culture products require DNA contamination of less than 100 pg/dose. Therefore, permeation and rejection of DNA through the porous membranes have become important in the application of DNA removal in bio-drug manufacturing using membrane technology. In this study, the permeation of DNA and chromatin through regenerated cellulose hollow fibers that have a mean pore diameter of 15 nm was investigated.

  • PDF

Removal Characteristics of cobalt by Complexation with Humic Substances

  • 양지원;김호정;백기태;김보경
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.128-131
    • /
    • 2003
  • It is well known that the membrane separation process combined with surfactant micelle (micellar-enhanced ultrafiltration) or polyelectrolyte (polyelectrolyte-enhanced ultrafiltration) can remove heavy metals effectively. However, the environmental hazard of surfactant or polyelectrolyte remained in effluent is a serious disadvantage of these methods. In this study, humic substances (HS) were used as complexing agents for metal removal instead of synthetic chemicals. The HS are a sort of natural organic matters which are biodegradable and abundant in natural environment. And the functional groups such as carboxyl groups and phenols in HS can bind with the cationic radionuclides and form complexes. Therefore separation process using them will be more environmental-friendly. The effects of concentration of HS and pH on the removal of cobalt were investigated. The ultrafiltration process was applied to the separation of the cobalt - HS complexes from the aqueous stream. At the concentration of > 3 g/L of HS and pH of 6, over 95 % of cobalt was removed by regenerated cellulose membrane of molecular weight cut-off (MWCO) 3,000. As the concentration of HS increased, the removal of cobalt also was improved because of increase in biding sites (functional groups). The cobalt removal increased from 72.5 % to 97.5 % when pH increased from 4 to 8 at the concentration of 3 g/L HS because of increase in HS solubility and cobalt hydroxide precipitation. In the presence of NaCl, the removal efficiency of cobalt decreased.

  • PDF

Fibril Removal from Lyocell by Enzymatic Treatment -Compare NaOH Pre-treatment with Treating Enzyme (전처리에 의한 리오셀의 피브릴레이션 변화 -NaOH와 효소 처리 중심으로-)

  • Park, Ji-Yang;Kim, Ju-Hea;Jeon, Dong-Won;Park, Young-Hwan
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.30 no.8
    • /
    • pp.1323-1332
    • /
    • 2006
  • Lyocell is a regenerated cellulose fiber manufactured by an environmentally-friendly process. Since the fiber has more crystalline region compared to rayon, lyocell shows higher wet-strength than rayon. Although fibril generation of lyocell is lower than that of rayon because of the reason, the fibril generated during the wet process deteriorates the smooth look and soft touch of the fabric. The efficient way to remove the fibril yet retain the strength property was investigated in this work. In order to scour and remove the fibril from the fabric, cellulase enzymes were introduced and the traditional scouring was carried to be compared. Weight loss, dye-ability, and strength of treated fabric were measured after the treatments. Scanning electron microscopy was used to observe the surface of the fiber. Among the cellulases used in this work, Denimax 992L showed the best results for removal of fibril with low weight loss and tensile strength loss. The optimal conditions for the enzymatic treatment could be chosen depending on a characteristic for final purpose of the lyocell product.

Cadmium and zinc removal from water by polyelectrolyte enhanced ultrafiltration

  • Ennigrou, Dorra Jellouli;Ali, Mourad Ben Sik;Dhahbi, Mahmoud;Mokhtar, Ferid
    • Membrane and Water Treatment
    • /
    • v.5 no.3
    • /
    • pp.183-195
    • /
    • 2014
  • The efficiency of two metal ions (cadmium, zinc) removal from aqueous solutions by ultrafiltration (UF) and Polymer Enhanced Ultrafiltration (PEUF) processes were investigated in this work. The UF and PEUF studies were carried out using an ultrafiltration tangential cell system equipped with 5.000 MWCO regenerated cellulose. A water-soluble polymer: the polyacrylic acid (PAA) was used as complexant for PEUF experiments. The effects of transmembrane pressure, pH, metal ions and loading ratio on permeate fluxes and metal ions removals were evaluated. In UF process, permeate fluxes increase linearly with increasing pH for different transmembrane pressure, which may be the consequence of the formation of soluble metal hydroxyl complexes in the aqueous phase. In PEUF process, above pH 5.0, the Cd(II) retention reaches a plateau at 90% and Zn(II) at 80% for L = 5. Also, cadmium retention at different L is greater than zinc retention at pH varying from 5.0 to 9.0. In a mixture solution, cadmium retention is higher than zinc for different loading ratio, this is due to interactions between carboxylic groups of PAA and metal ions and more important with cadmium ions.

Binding of Methylene Blue to two types of water soluble polymer and its removal by polyelectrolyte enhanced ultrafiltration

  • Mansour, Nadia Cheickh;Ouni, Hedia;Hafiane, Amor
    • Membrane and Water Treatment
    • /
    • v.9 no.2
    • /
    • pp.87-94
    • /
    • 2018
  • The interactions of water soluble polymers with dye are studied by ultrafiltration using a molecular weight cut off of 10 KDa regenerated cellulose ultrafiltration membrane. Two water-soluble polymers, namely Poly (Sodium-4 Styrenesulfonate) (PSS) and Poly (Vinyl Alcohol) (PVA) were selected for this study. The effects of process parameters, such as, polyelectrolyte concentrations, transmembrane pressure, ionic strength and pH of solution on dye retention and permeation flux were examined. PSS enhanced ultrafiltration achieved dye retention as high as 99% as a result of complexation between polyanion containing aromatic groups and cationic dye. This result was confirmed by the red shift. The retention of dye decreases as the salt concentration increases, a high retention was obtained at pH above 4. However, in case of PVA, relatively low retention (50%) was observed. Ionic strength and pH has no significant effect on the removal of MB. The permeate flux depended slightly on polyelectrolytes concentrations, transmembrane pressure, salt concentration and pH.

Studies on the Transport of Acetic Acid by Electrodialysis (전기투석에 의한 초산의 이동특성 연구)

  • 최동민;구윤모
    • KSBB Journal
    • /
    • v.11 no.3
    • /
    • pp.360-366
    • /
    • 1996
  • Electrodialysis of acetic acid was studied to find out the trend of the transport of organic acids through ultrafiltration and ion exchange membranes. The net transport rate of acetic acid was determined from the electro-migration velocity relative to the electro-osmotic flow rate through the membrane. Electro-osmosis flows through ultrafiltration membranes were from the anodic side to the cathodic side in the presence of electric field. The surface of ultrafiltration membrane was measured by the electro-osmotic flow to be charged negatively. Different transport behaviors of acetic acid were found with the ultrafiltration membranes of different materials. In general, regenerated cellulose membranes (YM series) were more effective than polysulfone membranes (PM series) for the transport of acetic acid. The transport of acetic acid was affected by electric strength, distance between the electrodes, surface area of electrode, temperature, and pore size of membrane. The transport rate through the ion exchange membrane was 1.5 to 3 times of those through the ultrafiltration membranes at the constant current of 150 mA in the experimental ranges. The transport rate of acetic acid through the ion exchange membrane increased by 10% with a pulse electric field of 10 sec/hr.

  • PDF

Dental Treatment of Child with Hemophilia (혈우병을 가진 어린이의 치과치료)

  • Lim, Ji Eun;Lee, Soo Eon;Ahn, Hyo Jung;Park, Jae-Hong;Choi, Sung Chul
    • Journal of The Korean Dental Society of Anesthesiology
    • /
    • v.12 no.4
    • /
    • pp.229-233
    • /
    • 2012
  • Hemophilia, the most common of the inherited bleeding disorder, is the result of a deficiency of clotting factor. Since bleeding after dental treatment may cause severe or even fatal complications, people with hemophilia must be given special dental care. We report on the diagnosis and treatment of a 9-year-old boy having severe hemophilia visited our department with the chief complaints of pus discharge on the left lower molar region. In the clinical and radiographic examination, periapical abscess and dental caries were diagnosed. Considering complexity of the treatment and complication in the coagulation, it was decided to carry on the treatment under general anesthesia. Clotting factor IX concentrates were intended to provide 50-70% plasma level. Pulpectomy, resin restoration and Stainless steel crown were given under general anesthesia. Several teeth were extracted and the sockets were packed with Surgicel$^{(R)}$ (Oxidized Regenerated Cellulose, Johnson and Johnson Co. Neuchatel, Switzerland) under general anesthesia. Transpalatal arch and lingual arch were given for maintaining the extracted space before discharged. For people with severe hemophilia, factor replacement is necessary before scaling, surgery or regional block injections. Therefore, if several extractions are needed, dental care under general anesthesia would be effective and efficient management.

The Effective Preparation of Protopanaxadiol Saponin Enriched Fraction from Ginseng using the Ultrafiltration

  • Seol, Su Yeon;Kim, Bo Ram;Hong, Se Chul;Yoo, Ji Hyun;Lee, Kun Hee;Lee, Ho Joo;Park, Jong Dae;Pyo, Mi Kyung
    • Natural Product Sciences
    • /
    • v.20 no.1
    • /
    • pp.58-64
    • /
    • 2014
  • In this study, edible protopanaxadiol saponin enriched fraction were prepared by ultrafiltration (UF). Ginseng extract was prepared from mixtures of ginseng main root and rootlet (root: rootlet = 4 : 6). UF system was used the four-piston Diaphragm pump equipped with 5 kDa pore size Hydrosart Cassette made by regenerated cellulose acetate (CA) or 3 kDa pore size Hollow Fiber cartridge made by polyethersulfone (PES). Total ginsenoside contents of concentrated fraction by UF system was found to higher, compared to before those of untreated method. Especially, processing of UF showed the increase of PPD-type ginsenoside, while PPT-type ginsenoside was gradually decreased by both 3 kDa and 5 kDa membrane. After removal of 80% water by the 5 kDa Hydrosart Cassette and by 3 kDa Hollow Fiber cartridge, ginsenoside Rb1 content was higher 37.2 mg/g and 25.3 mg/g than 20.8 mg/g in untreated process. The ratio of Rb1 to Rg1 (Rb1/Rg1) and PPD- to PPT- type ginsenoside (PPD/PPT) were higher in inner fluid of ginseng extract after UF by 3 kDa cartridge (47.1 and 23.5, respectively) and 5 kDa Cassette (25.3 and 11.9, respectively) than those of before UF (5.7 and 3.7, respectively). PPD-type ginsenoside enriched fraction by UF system could be developed as a new ginseng material in food and cosmetic industrials.

Development of L-Lysine Producing Strains from Cellulosic Substrate by the Intergeneric Protoplast Fusion - Conditions for Fusion and Properties of Fusants- (속간 원형질체 융합에 의한 섬유질 기질로부터 L-Lysine 생산균주 개발 -융합조건 및 융합체의 성질 -)

  • 성낙계;정덕화;박법규;정영철;전효곤
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.3
    • /
    • pp.175-181
    • /
    • 1988
  • To produce L-lysine from cellulosic substrate, the intergeneric protoplast fusion between Cellulomonas flavigena and Corynebacterium glutamicum, Cellulomonas flavigena and Brevibacterium flavum was performed. The fusion frequencies were 1.9$\times$10$^{-6}$ to 2.1$\times$10$^{-6}$ for the regenerated protoplasts when two parental strains were treated with 30% of polyethyleneglycol (M.W.6000) containing 5 mM EDTA at 3$0^{\circ}C$ for 30 min. Two fusants, FCB3 and FCC 19 were finally selected by comparision of their genetic stability and L-lysine productivity. The properties of fusants-DNA con-tent, G+C content and L-lysine productivity-were investigated. The DNA content of fusants was greater than those of the parental strain and their G+C contents are equal to half of total G+C con-tent of two parental strains. The fusants showed high productivity of L-lysine from carboxy methyl cellulose as substrate.

  • PDF