• Title/Summary/Keyword: regenerated cellulose

Search Result 62, Processing Time 0.023 seconds

Characteristics and Dyeing Properties of Green Tea Colorants(Part I) -Components and characteristics of Green Tea Colorants- (녹차색소의 특성과 염색성 (제1보) -녹차색소의 성분과 특성-)

  • Shin, Youn-sook;Choi, Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.23 no.1
    • /
    • pp.140-146
    • /
    • 1999
  • Colorants in green tea were extracted freeze-dried and analyzed to investigate the possibility of using as a natural dye. Fractionation of the colorants was carried out by column chromatograpy. Colorants in green tea were eluted into five fractions. All the fractions except fraction F2 showed absorption peakat 280nm. Fraction f2 showed absorption peak at 270nm and broad peak at 350nm, From the IR analysis it is speculated that fractions F2-F5 having similar stucture but different molecular weight are catechis. Silk fabrics dyes with fractions F1-F4 showed yellowish red color while sample dyed with fraction F5 showed red color. The colorants from green tea infusion was applied to silk wool nylon cotton and rayon fabrices. It showed relatively good affinity to protein and polyamide fibers bur low affinity to cellulose and regenerated cellulose fibers.

  • PDF

Development of Polymeric Adsorbents for the Treatment of Colored Waste Waters and It's Applications ―Diethylaminoethylated Cellulosic Adsorbents― (유색배수 처리를 위한 고분자흡착제의 개발과 그 응용(III) ―디에틸아미노에틸화 셀룰로오스계 흡착제―)

  • Choe, Ji Eun;Sung, Woo Kyung;Lee, Mee Kyung;Park, Soo Min
    • Textile Coloration and Finishing
    • /
    • v.5 no.4
    • /
    • pp.42-48
    • /
    • 1993
  • In the present work, decoloring of acid dye solution by the diethylaminoethylated cellulosic adsorbents($CA_{DASE}$) was studied with the aim of developing polymeric adsorbents for the treatment of colored wastewaters. To prepare the cellulosic adsorbents, the $CA_{DASE}$ cellulose and polyvinyl alcohol mixture(80 wt% cellulose content) were crosslinked by tryacryloyl hexahydro-s-tryazine(TAHHT), ammonium phosphate and then treated with solutions containing sodium hydroxide and 2-diethylaminoethyl chloride. Batch and flow method were employed to determine decoloring capacity of C $A_{DEAE}$ for C.I.acid yellow 49. $CA_{DASE}$ exhibited much better desorption capacity than activated carbon. Furthermore, the exhausted $$CA{DASE} could be readily regenerated by washing with dilute sodium hydroxide.

  • PDF

Preparation of Cellulose Nanofibril/Regenerated Silk Fibroin Composite Fibers

  • Lee, Ji Hye;Bae, Chang Hyun;Park, Byung-Dae;Um, In Chul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.26 no.2
    • /
    • pp.81-88
    • /
    • 2013
  • Wet-spun silk fibers have attracted the attention of many researchers because of 1) the unique properties of silk as a biomaterial, including good biocompatibility and cyto-compatability and 2) the various methods available to control the structure and properties of the fiber. Cellulose nanofibrils (CNFs) have typically been used as a reinforcing material for natural and synthetic polymers. In this study, CNF-embedded silk fibroin (SF) nanocomposite fibers were prepared for the first time. The effects of CNF content on the rheology of the dope solution and the characteristics of wet-spun CNF/SF composite fibers were also examined. A 5% SF formic acid solution that contained no CNFs showed nearly Newtonian fluid behavior, with slight shear thinning. However, after the addition of 1% CNFs, the viscosity of the dope solution increased significantly, and apparent shear thinning was observed. The maximum draw ratio of the CNF/SF composite fibers decreased as the CNF content increased. Interestingly, the crystallinity index for the silk in the CNF/SF fibers was sequentially reduced as the CNF content was increased. This phenomenon may be due to the fact that the CNFs prevent ${\beta}$-sheet crystallization of the SF by elimination of formic acid from the dope solution during the coagulation process. The CNF/SF composite fibers displayed a relatively smooth surface with stripes, at low magnification (${\times}500$). However, a rugged nanoscale surface was observed at high magnification (${\times}10,000$), and the surface roughness increased with the CNF content.

The Structural Change and Hand of Cellulosic Fiber treated with N-methylmorpholine-N-oxide (N-Methylmorpholine-N-Oxide 처리에 의한 셀룰로오스 직물의 구조변화와 태분석)

  • 조규민;강건우;임용진;김미경;김태경;이혜정
    • Textile Coloration and Finishing
    • /
    • v.15 no.4
    • /
    • pp.43-50
    • /
    • 2003
  • N-methylmorpholine-N-oxide(NMMO) is recently hewn as a solvent dissolving cellulose to produce a new regenerated cellulosic fiber, lyocell. In this study, four kinds of cellulosic fibers (lyocell, regular cotton, treated cotton with 50% and 75% NMMO aqueous solution) was examined and compared in terms of mechanical properties and dyeability. The swelling of cotton treated with NMMO aqueous solution is higher than that of cotton treated with water. In dyeing rate, the cotton treated with NMMO was faster than regular cotton. NMMO treatment decreased the crystallinity of cotton fabrics and improved their softness and smoothness.

Ultrafiltration of Oily Wastewater with Surface Pretreated Membranes

  • Kim, Kyu-Jin;Fane, Antony G.
    • Korean Membrane Journal
    • /
    • v.1 no.1
    • /
    • pp.43-49
    • /
    • 1999
  • Separation of soluble oil was investigated during filtration of cutting oil emulsion using various commercial ultrafiltration membranes. The surface properties of membranes used were hydrophilic hydrophobic and modified surfaces by various surfactant pretreatments. Conditions varied include stirring speed transmeembrane pressure membrane type and surfactant type for pretreatment. The results give some indication of mechanisms occurring at the membrane surface. Surfactant pretreatments significantly improved water flux and UF flux of hydrophilic regenerated cellulose(up to 2.4x for YM100) and hydrophobic polysulfone (up to 2.2x for PTHK) membranes depending on surfactant type and operating conditions. The UF flux enhancement was attributed to membrane swelling and reduction of interfacial surface tension between oil droplets and membrane surface. unexpectedly the hydrophilic membranes revealed greater flux enhancement than the hydrophobic membranes. The results also showed a greater improvement in UF flux at lower operating pressure.

  • PDF

Selective Bronchial Occlusion for Treatment of Intractable Pneumothorax with Emphysematous Lung (폐기종과 지속적인 공기누출을 동반한 기흉의 기관지 색전술 - 2례 보고 -)

  • 안현성;신호승;이원진
    • Journal of Chest Surgery
    • /
    • v.34 no.10
    • /
    • pp.800-804
    • /
    • 2001
  • The intractable pneumothorax with continuous air leakage, emphysematous lung and high operative risk treated by selective bronchial occlusion has been seldomly reported abroad. The bronchus responsible for air leakage was occluded with such materials as fibrin glue, gelatin sponge and oxidized regenerated cellulose(surgicel). We performed selective bronchial occlusion by flexible fiberoptic bronchoscopy with gelfoam in two cases. There was no complication after the procedure; therefore, we report the treatment for intractable pneumo- thorax by bronchoscopy with gelfoam packing.

  • PDF

Preparation and Biocompatibility of Medical Fiber from Novel Regenerated Cellulose from Styela clava tunic (미더덕껍질의 재생셀룰로오스를 이용한 의료용 섬유의 제조 및 생체적합성)

  • Song, Sung Hwa;Kim, Ji Eun;Choi, Jun Young;Park, Jin Ju;Lee, Mi Rim;Song, Bo Ram;Lee, Yechan;Kim, Hong Sung;Lee, Jae Ho;Lim, Yong;Hwang, Dae Youn;Jung, Young Jin
    • Textile Coloration and Finishing
    • /
    • v.30 no.2
    • /
    • pp.117-129
    • /
    • 2018
  • Cellulose has been widely applied into various medical fields including scaffolding, tissue engineering and tissue formation. In this study, we manufactured cellulose medical fiber from Styela clava tunics(SCT-CS) and analyzed the tensile strength, elongation at break, fluid uptake and surface morphology. And then, the biocompatibility and toxicity of SCT-CS were measured in Sprague-Dawley(SD) rats after the implantation for 30, 60 and 90 days. The level of tensile strength and fluid uptake were lower in SCT-CS than chromic catgut(CCG), while elongation at break level were maintained the higher in SCT-CS. Also, the roughness with pronounced surface patterns as a result of in vivo degradation was significantly greater in CCG than this of SCT-CS although these levels gradually appeared with time in both groups. After implantation for 90 days, SCT-CS and CCG was successfully implanted around muscle of thigh without any significant immune response. Furthermore, no significant alterations were measured in serum parameters and the specific pathological features induced by most toxic compounds for liver and kidney toxicity. Therefore, these results suggest that SCT-CS showing good biocompatibility and non-toxicity can be successfully prepared from cellulose powder of SCT as well as has the potential for use as a powerful biomaterial for medical sutures.

EXPERIMENTAL STUDY OF PERIPHERAL NERVE REGENERATION BY USING NON-TUBULAR NATURAL CELLULOSE MEMBRANE NERVE CONDUIT (비관형 천연 셀룰로오스막 도관을 이용한 말초신경 재생에 대한 실험적 연구)

  • Kim, Soung-Min;Lee, Jong-Ho;Lee, Suk-Keun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.32 no.4
    • /
    • pp.295-307
    • /
    • 2006
  • Styela clava, called non-native tunicate or sea squirt, is habitat which include bays and harbors in Korea and several sites in the sea faced world. We fabricate cellulose membrane nerve conduit (CMNC) from this native sea squirt skin, and evaluate the capacity of promoting peripheral nerve regeneration in the rat sciatic nerve defect model. After processing the pure cellulose membrane from the sea squirt skin as we already published before, CMNC was designed as a non-tubular sheet with 14 mm length and 4 mm width. Total eleven male Spraque-Dawley rats (12 weeks, weighing 250 to 300g) were divided into sham group (n=2), silicone tube grafted control group (n=3) and experimental group (n=6). Each CMNC grafted nerve was evaluated after 4, 8 and 12 weeks in the experimental group, and after 12 weeks, sciatic function was evaluated with sciatic function index (SFI) and gait analysis, and histomorphology of nerve conduit and the innervated tissues of sciatic nerve were all examined using image analyzer and electromicroscopic methods in the all groups. The regenerated axon and nerve sheath were found only in the inner surface of the CMNC after 4 weeks and became more thicker after 8 and 12 weeks. In the TEM study, CMNC grafted group showed more abundant organized myelinated nerve fibers with thickened extracellular matrix than silicone conduit grafted group after 12 weeks. The sciatic function index (SFI) and ankle stance angle (ASA) in the functional evaluation were $-47.2{\pm}3.9$, $35.5^{\circ}{\pm}4.9^{\circ}$ in CMNC grafted group (n=2) and $-80.4{\pm}7.4$, $29.2^{\circ}{\pm}5.3^{\circ}$ in silicone conduit grafted group (n=3), respectively. And the myelinated axon was 41.59% in CMNC group and 9.51% in silicone conduit group to the sham group. The development of a bioactive CMNC to replace autogenous nerve grafts offers a potential and available approach to improved peripheral nerve regeneration. As we already published before, small peptide fragment derived from the basement membrane matrix proteins of squirt skin, which is a kind of anchoring protein composed of glycocalyx, induced the effective axonal regeneration with rapid growth of Schwann cells beneath the inner surface of CMNC. So the possibilities of clinical application as a peripheral nerve regeneration will be able to be suggested.

Determination of Cadmium Ions by Designing an Optode Based on Immobilization of Dithizone on a Triacetylecelluose Membrane in Polluted Soil and Water Samples

  • Tavallali, Hossein;Kazempourfard, Fatemeh
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.2
    • /
    • pp.144-151
    • /
    • 2009
  • An optode for cadmium ion determination has been designed by immobilization of dithizone on triacetylcellose membrane. When the optode membrane is introduced into a real samples containing cadmium, there is a color change from green to red, making it possible to use the change in absorbance at 611 nm as the analytical signal. The sensor could be used in the range of 0.3-3 ${\mu}g\;ml^{-1}$ (2.67-26.67 ${\mu}M$) of $Cd^{2+}$ ions with a limit of detection of 0.025 ${\mu}g\;ml^{-1}$ (25 ng $ml^{-1}$). The response time of optode is within 15 min depending on the concentration of $Cd^{2+}$ ions. It can be easily and completely regenerated by dilute EDTA solution. The effect of different possible interfering species has been examined and was shown the optode has a good selectivity. The results obtained for the determination of cadmium ion in polluted soil and water samples using the proposed optode was found to be comparable with the well-established atomic absorption method.

Abatement of Metal Ion Contents from Cotton Linter for the Manufacture of Regenerated Cellulose (방직용 재생섬유 제조를 위한 면 린터의 금속이온 함량 저감에 관한 연구)

  • Park, Hee Jeong;Son, Ha Neul;Choi, Jin Sung;Seo, Yung Bum
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.6
    • /
    • pp.17-23
    • /
    • 2013
  • The reduction of metal ion from the cotton linter for the preparation of NMMO (N-methylmorpholine N-oxide)-based dissolving pulp was investigated. The NMMO-based dissolving pulp was usually used for the manufacture of high quality fabrics, and need to have high alpha cellulose content and high brightness. NMMO, which is environmentally friendly, and reusable after recovering process, is very sensitive to the metal ions such as Cu, Fe, Mg, and Cr. Electron beam, sulfuric acid, acetic acid, and ozone treatment before bleaching were used and the concentration changes of the metal ions were compared to that of EDTA, a chelating agent. It was found that both acid treatments (sulfuric and acetic acid) were very effective and comparable to EDTA treatment at the same dosage in metal ion reduction, but electron beam and ozone treatment were not. The sulfuric acid treatment turned out to be effective in metal ion reduction, and most inexpensive.