• 제목/요약/키워드: refueling

검색결과 251건 처리시간 0.022초

개질형 On-Site 수소충전소의 리스크 감소를 위해 요구되는 SIL 등급 달성 방안에 관한 연구 (A Study on the Achievement of Required Safety Integrity Level to Reduce Risk for SMR On-Site Hydrogen Refueling Stations)

  • 이진호;임재용
    • 한국안전학회지
    • /
    • 제35권6호
    • /
    • pp.1-8
    • /
    • 2020
  • In recent years, hydrogen has received much attention as an alternative energy source to fossil fuels. In order to ensure safety from the increasing number of hydrogen refueling stations, prevention methods have been required. In this regard, this study suggested an approach to reduce the risk of hydrogen refueling station by increasing Safety Integrity Level (SIL) for a Steam Methane Reformer (SMR) in On-Site Hydrogen Refueling Station. The worst scenario in the SMR was selected by HAZOP and the required SIL for the worst scenario was identified by LOPA. To verify the required SIL, the PFDavg.(1/RRF) of Safety Instrumented System (SIS) in SMR was calculated by using realistic failure rate data of SIS. Next, several conditions were tested by varying the sensor redundancy and proof test interval reduction and their effects on risk reduction factor were investigated. Consequently, an improved condition, which were the redundancy of two-out-of-three and the proof test interval of twelve months, achieved the tolerable risk resulting in the magnitude of risk reduction factor ten times greater than that of the baseline condition.

수소충전유량 현장교정시스템의 개발 (Development of Hydrogen Flow Field Standard in Hydrogen Refueling Station)

  • 강웅;신진우;이생희;윤병로;백운봉
    • 한국수소및신에너지학회논문집
    • /
    • 제33권6호
    • /
    • pp.684-691
    • /
    • 2022
  • Hydrogen fuel cell electric vehicles are typically refueled at a wide range of temperatures (-40℃ to 85℃) in the hydrogen refueling station in accordance with the worldwide accepted standard. Currently, there is no traceable method by which to verify and calibrate the hydrogen flowmeters to be used at hydrogen refueling stations except for a water calibration process as a conventional method. KRISS hydrogen field test standard based on the gravimetric principle was developed to verify the measurement accuracy of the mass flowmeter to be used at hydrogen refueling stations for the first time in Korea.

수소압축기 내장 충전탱크용 벨로우즈의 형상 파라미터 변화에 따른 구조 성능 고찰 (Study on Structural Performance by Shape Parameter Variation of Bellows for the Hydrogen Compressor-embedded Refueling Tank)

  • 박우창;정민석;송창용
    • 한국수소및신에너지학회논문집
    • /
    • 제35권1호
    • /
    • pp.75-82
    • /
    • 2024
  • In this study, design parameter exploration based on finite element analysis was performed to find the optimal shape of bellows, the key component of compressor-embedded refueling tank for a newly developed hydrogen refueling station capable of high-pressure charging above 900 bar. In the design parametric study, the design variables took into account the bellows shapes such as contour radius and span spacing, and the response factors were set to the maximum stress and the gap in the contact direction. In the shape design of the compressor bellows for hydrogen refueling station considered in this study, it was found that adjusting the contour span is an appropriate design method to improve the compression performance and structural safety. From the selection of optimal design, the maximum stress was reduced to 49% compared to the initial design without exceeding the material yield stress.

LPG 이송작업시 인적과오에 대한 사상수목분석

  • 김호영;김성영;임현교
    • 한국산업안전학회:학술대회논문집
    • /
    • 한국안전학회 1998년도 춘계 학술논문발표회 논문집
    • /
    • pp.277-284
    • /
    • 1998
  • LPG refueling include a lot of risk done by human beings, dealing with highly combustible gas, so, during the refueling, the leakage initiated by human errors can result in a catastrophic accident. Therefore, this research tried to show what kind of tasks would include the high probability of the human errors and what should be considered for effective safety management in the LPG refueling. At first, 4 typical cases were taken through surveying various accident cases, and then a prototype of the refueling task was presented. And each task was analysed by FTA and ETA. The results showed that overpressure occupies 64.64% of the major reasons for gas leakage, and its probability was approximately 6.62E-06. Among the tasks, gas leakage resulted from mal-assembly of lorry hoses had the highest rate, and human errors related to opening and closing valves of pipe lines were most frequent. Also, the effects of confirming tasks were analyzed quantitatively.

  • PDF

주유중 증발가스제어 필러넥 체크밸브의 유동해석 (An Analytical Investigation on Fluid Dynamics of Filler Neck Check Valve for On-board Refueling Vapor Recovery)

  • 김성훈;이재천
    • 한국정밀공학회지
    • /
    • 제20권10호
    • /
    • pp.105-111
    • /
    • 2003
  • ORVR filler neck check valve, which is one of the essential components of the vapor fuel control system, should diminish the evaporation by maintaining laminar fluid flow on refueling process. This study presents numerical. results of pressure and velocity distributions of the fluid flow in a ORVR filler neck check valve on refueling process. CFD-ACE+ has been employed for numerical analysis based on the information of experimental results of valve position as a function of inlet flow rate. No abrupt pressure change, which may causes vaporization of fuel, has been confirmed to take place on the concave surface of the valve spool. However, it is clear that some possibility exist at the mid-position of surface of valve spool and downstream according to the opening of valve.

수소충전소 및 수소자동차의 사고 시나리오 개발 (Development of Accident Scenarios for Hydrogen Refueling Station and Fuel Cell Vehicle)

  • 박병직;김양균;임옥근
    • 자동차안전학회지
    • /
    • 제15권1호
    • /
    • pp.27-34
    • /
    • 2023
  • The registration rate of eco-friendly vehicles, such as hydrogen vehicles, is increasing rapidly, however, few first responders have experienced related accidents. Accident scenarios at hydrogen refueling stations and hydrogen vehicles on a road were investigated, and the relative importance of each scenario was analyzed using AHP analysis. Leakage, jet flame, and explosion that occurred inside and outside the hydrogen refueling station were reviewed, and the hydrogen gas explosion in the compartment showed the highest importance value. In case of the hydrogen vehicle, traffic accident statistics and actual accidents were used. It was analyzed that the hydrogen vessel explosion on the road due to the failure of TPRD and the leakage in the underground parking area were difficult to respond. The developed accident scenarios are expected to be used for first responder training.

이동식수소스테이션 정량적 위험성평가에 관한 연구 (A Study on the Quantitative Risk Assessment of Mobile Hydrogen Refueling Station)

  • 김동환;이수민;조충희;강승규;허윤실
    • 한국수소및신에너지학회논문집
    • /
    • 제31권6호
    • /
    • pp.605-613
    • /
    • 2020
  • In July and October of this year, the government announced the 'Green new deal plan within the Korean new deal policy' and 'Strategies for proliferation of future vehicles and market preoccupation'. And, in response to changes in the global climate agreement, it has decided to expand green mobility such as electric vehicles and hydrogen electric vehicles with the aim of a "net-zero" society. Accordingly, the goal is to build 310 hydrogen refueling stations along with the supply of 60,000 hydrogen vehicles in 2022, and the hydrogen infrastructure is being expanded. however, it is difficult to secure hydrogen infrastructure due to expensive construction costs and difficulty the selection of a site. In Korea, it is possible to build a mobile hydrogen station according to the safety standards covering special case of the Ministry of Industry. Since the mobile hydrogen station can be charged while moving between authorized place, it has the advantage of being able to meet a large number of demands with only one hydrogen refueling station, so it is proposed as a model suitable for the early market of hydrogen infrastructure. This study demonstrates the establishment of a hydrogen refueling station by deriving a virtual accident scenario for leakage and catastrupture for each facility for the risk factors in a mobile hydrogen station, and performing a quantitative risk assessment through the derived scenario. Through the virtual accident scenario, direction of demonstration and implications for the construction of a mobile hydrogen refueling station were derived.

정량적 위험성 평가를 통한 고속도로 휴게소 수소 충전소 안전 가이드라인 연구 (A Study on Safety Guidelines for Hydrogen Refueling Stations at Expressway Service Area using Quantitative Risk Assessment)

  • 김희진;장경민;김수현;김기범;정은상
    • 한국수소및신에너지학회논문집
    • /
    • 제32권6호
    • /
    • pp.551-564
    • /
    • 2021
  • The use of clean energy based on the hydrogen economy is increasing rapidly due to the greenhouse gas reduction policies and the increase in the need for hydrogen. Currently, South Korea government have been considering a plan to construct hydrogen refueling stations at expressway service area for the purpose of supplying hydrogen vehicles. In the case of a hydrogen refueling stations, a quantitative risk assessment (QRA) must be performed because it includs and uses a high pressurized hydrogen storage tank. In this study, QRA was conducted using societal risk and F-N curve by the consequence assessment (CA) of jet fire and explosion according to the population density, capacity of the high pressurized hydrogen storage tank and frequency assessment (FA) data to the general hydrogen refueling stations systems in expressway service area. In the cases of jet with a leak diameter of 7.16 mm, regardless of expressway service area location, the societal risk was over 1E-04 that was acceptable for as Low As reasonably practicable (ALARP) region (workforce), but unacceptable for ALARP region (public). In the cases of gas explosion, all expressway service area satisfy ALARP region. In the case of the population density is over 0.0727, QRA for constructing the hydrogen refueling stations, must be conducted.

구조방정식 모델을 이용한 수소충전소 수용에 미치는 요인분석 (The Factor Analysis for Acceptance on Hydrogen Refueling Station Using Structure Equation Model)

  • 이미정;백종배
    • Korean Chemical Engineering Research
    • /
    • 제60권3호
    • /
    • pp.356-362
    • /
    • 2022
  • 수소 기술과 관련된 연구는 전 세계적으로 활발하게 진행되고 있다. 우리나라도 수소경제 강국으로 도약하기 위해 기술개발에 많은 노력을 기울이고 있다. 특히, 세계 수소차 보급률 1위가 그 증거이다. 그러나 수소차의 인프라인 수소충전소 구축이 지연되고 있다. 지연요인은 대중들의 반대가 가장 크다. 이와 같이, 대중들의 지지를 받지 못한 정책은 성공적으로 실현될 수 없고, 지속가능하지 않다. 따라서 이 연구에서는 수소충전소를 찬성하고 반대하는 수용성에 미치는 요인을 분석하고자 한다. 연구방법으로는 선행연구를 검토하여 수용성에 미치는 기초요인을 파악하였고, 설정된 요인을 바탕으로 설문을 설계하고 조사하였다. 설문에 대한 타당도와 신뢰도를 검증하였으며, 상관분석을 통해 가설을 검증하였다. 그리고, 구조방정식 모델링을 사용하여 수소충전소 수용성에 미치는 요인 모델을 개발하였다. 연구 결과로 수용성을 사적수용성과 공적수용성으로 구분하였으며, 사적수용성의 경우에는 환경에 대한 태도와 수소충전소에 대한 지식의 정도가 높을수록, 수소충전소에 대한 위험을 느끼는 정도가 적을수록 수용성이 크다는 것을 확인하였다. 그리고 공적수용성의 경우에는 이익이 많고, 환경에 대한 태도가 좋을수록, 위험을 감수하는 개인의 특성이 적을수록 수용성이 크다는 것을 확인하였다. 이 연구를 통해 수소충전소 등 국가정책 시행 시 주민들의 수용성 제고 방안을 모색하는 기초자료로써 제공하고, 과학적인 소통의 분석자료로 활용될 것을 기대한다.