• Title/Summary/Keyword: reflection seismic exploration

Search Result 126, Processing Time 0.025 seconds

Application of Residual Statics to Land Seismic Data: traveltime decomposition vs stack-power maximization (육상 탄성파자료에 대한 나머지 정적보정의 효과: 주행시간 분해기법과 겹쌓기제곱 최대화기법)

  • Sa, Jinhyeon;Woo, Juhwan;Rhee, Chulwoo;Kim, Jisoo
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.1
    • /
    • pp.11-19
    • /
    • 2016
  • Two representative residual static methods of traveltime decomposition and stack-power maximization are discussed in terms of application to land seismic data. For the model data with synthetic shot/receiver statics (time shift) applied and random noises added, continuities of reflection event are much improved by stack-power maximization method, resulting the derived time-shifts approximately equal to the synthetic statics. Optimal parameters (maximum allowable shift, correlation window, iteration number) for residual statics are effectively chosen with diagnostic displays of CSP (common shot point) stack and CRP (common receiver point) stack as well as CMP gather. In addition to removal of long-wavelength time shift by refraction statics, prior to residual statics, processing steps of f-k filter, predictive deconvolution and time variant spectral whitening are employed to attenuate noises and thereby to minimize the error during the correlation process. The reflectors including horizontal layer of reservoir are more clearly shown in the variable-density section through repicking the velocities after residual statics and inverse NMO correction.

Interpretation of Sedimentary Structure and Depositional Environment Based on a High-Resolution Seismic Profile across the Northeastern Boundary of the Pungam Basin (고해상도 탄성파자료를 이용한 풍암분지 북동부의 퇴적구조 및 퇴적환경 연구)

  • Kim, Gi Yeong;Heo, Sik
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.2
    • /
    • pp.91-99
    • /
    • 1999
  • A high-resolution seismic profile acquired across the northeastern boundary of the Pungam Basin, one of the Cretaceous sedimentary basins in Korea, has been interpreted to delineate subsurface geological structures across the basin boundary. We identified boundary faults and unconformity surfaces of the basin and divided sediment body into three seismic depositional units (Units I, II, and III from youngest to oldest). Inferred from fault geometry and type, northeastern part of the Pungam Basin has been formed by a strike-slip fault whereas the normal faults near the boundary were formed by transtensional movement along a fault zone. A 350-400 m thick sediment layer is overlying the Precambrian gneiss. Bedding planes of Unit III are dipping westward and are closely related to an anticline in the acoustic basement. Unit II is also tilted westward, suggesting that the eastern part of the fault zone was uplifted after deposition of lower part of the sedimentary body. Afterward, the uplifted sediment layers were eroded and transported to the western part of the basin. Chaotic reflection pattern of sedimentary Units II and III may suggest that strike-slip movement along the fault zone deformed basin-filled sediments.

  • PDF

Magnetotelluric survey applied to geothermal exploration: An example at Seokmo Island, Korea (자기지전류법을 이용한 석모도에서의 지열자원 탐사)

  • Lee, Tae-Jong;Han, Nu-Ree;Song, Yoon-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.61-68
    • /
    • 2010
  • A magnetotelluric (MT) survey has been performed to delineate deeply extended fracture systems at the geothermal field in Seokmo Island, Korea. To assist interpretation of the MT data, geological surveying and well logging of existing wells were also performed. The surface geology of the island shows Cretaceous and Jurassic granite in the north and Precambrian schist in the south. The geothermal regime has been found along the boundary between the schist and Cretaceous granite. Because of the deep circulation along the fracture system, geothermal gradient of the target area exceeds $45^{\circ}C/km$, which is much higher than the average geothermal gradient in Korea. 2D and 3D inversions of MT data clearly showed a very conductive anomaly, which is interpreted as a fracture system bearing saline water that extends at least down to 1.5 km depth and is inclined eastwards. After drilling down to the depth of 1280 m, more than 4000 tons/day of geothermal water overflowed with temperature higher than $70^{\circ}C$. This water showed very similar chemical composition and temperature to those from another existing well, so that they can be considered to have the same origin; i.e. from the same fracture system. A new geothermal project for combined heat and power generation was launched in 2009 in Seokmo Island, based on the survey. Additional geophysical investigations including MT surveys to cover a wider area, seismic reflection surveys, borehole surveys, and well logging of more than 20 existing boreholes will be conducted.

Numerical studies of information about elastic parameter sets in non-linear elastic wavefield inversion schemes (비선형 탄성파 파동장 역산 방법에서 탄성파 변수 세트에 관한 정보의 수치적 연구)

  • Sakai, Akio
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.1-18
    • /
    • 2007
  • Non-linear elastic wavefield inversion is a powerful method for estimating elastic parameters for physical constraints that determine subsurface rock and properties. Here, I introduce six elastic-wave velocity models by reconstructing elastic-wave velocity variations from real data and a 2D elastic-wave velocity model. Reflection seismic data information is often decoupled into short and long wavelength components. The local search method has difficulty in estimating the longer wavelength velocity if the starting model is far from the true model, and source frequencies are then changed from lower to higher bands (as in the 'frequency-cascade scheme') to estimate model elastic parameters. Elastic parameters are inverted at each inversion step ('simultaneous mode') with a starting model of linear P- and S-wave velocity trends with depth. Elastic parameters are also derived by inversion in three other modes - using a P- and S-wave velocity basis $('V_P\;V_S\;mode')$; P-impedance and Poisson's ratio basis $('I_P\;Poisson\;mode')$; and P- and S-impedance $('I_P\;I_S\;mode')$. Density values are updated at each elastic inversion step under three assumptions in each mode. By evaluating the accuracy of the inversion for each parameter set for elastic models, it can be concluded that there is no specific difference between the inversion results for the $V_P\;V_S$ mode and the $I_P$ Poisson mode. The same conclusion is expected for the $I_P\;I_S$ mode, too. This gives us a sound basis for full wavelength elastic wavefield inversion.

Random heterogeneous model with bimodal velocity distribution for Methane Hydrate exploration (바이모달 분포형태 랜덤 불균질 매질에 의한 메탄하이드레이트층 모델화)

  • Kamei Rie;Hato Masami;Matsuoka Toshifumi
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.41-49
    • /
    • 2005
  • We have developed a random heterogeneous velocity model with bimodal distribution in methane hydrate-bearing Bones. The P-wave well-log data have a von Karman type autocorrelation function and non-Gaussian distribution. The velocity histogram has two peaks separated by several hundred metres per second. A random heterogeneous medium with bimodal distribution is generated by mapping of a medium with a Gaussian probability distribution, yielded by the normal spectral-based generation method. By using an ellipsoidal autocorrelation function, the random medium also incorporates anisotropy of autocorrelation lengths. A simulated P-wave velocity log reproduces well the features of the field data. This model is applied to two simulations of elastic wane propagation. Synthetic reflection sections with source signals in two different frequency bands imply that the velocity fluctuation of the random model with bimodal distribution causes the frequency dependence of the Bottom Simulating Reflector (BSR) by affecting wave field scattering. A synthetic cross-well section suggests that the strong attenuation observed in field data might be caused by the extrinsic attenuation in scattering. We conclude that random heterogeneity with bimodal distribution is a key issue in modelling hydrate-bearing Bones, and that it can explain the frequency dependence and scattering observed in seismic sections in such areas.

Basin analysis using high-resolution magnetotelluric data (고해상 자기지전류 자료를 이용한 분지해석)

  • Ryang Woo Hun
    • The Korean Journal of Petroleum Geology
    • /
    • v.7 no.1_2 s.8
    • /
    • pp.7-12
    • /
    • 1999
  • A new high-resolution rnagnetotelluric (MT) survey was conducted for pull-apart basin analysis (Cretaceous Eumsung Basin), combined with surface sedimentological results. Two cross-basinal MT profiles represent an asymmetric form with a subbasin in the southeastern part. These basinal architectures are well compatible with paleoflow directions and facies transitions of surface sedimentology. The results also suggest that the basin fills reflect pull-apart opening with rapid subsidence of the central blocks. Combined with the surface sedimentological data on asymmetric lithofacies distribution, facies transitions, and paleoflow directions of the alluvio-lacustrine systems, the MT data help explain basin-fill processes during the basin formation. For petroleum exploration and basin analysis, the high-frequency MT technique can be a useful substitute for the costly burden of a seismic-reflection survey on land.

  • PDF

Integrity test and depth estimation of deep foundations (깊은 기초의 건전도시험과 근입깊이 조사)

  • Jo Churl-hyun;Jung Hyun-key;Lee Tai-sup;Kim Hag-soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 1999.08a
    • /
    • pp.202-216
    • /
    • 1999
  • The deep foundation is frequently used for the infrastructures. Since the quality control of the cast-in-place concrete foundations such as CIP piles and slurry walls is not so easy as that of the ready made PC(prestressed concrete) piles, it is necessary to get the information on the integrity of the concrete of the foundation. The depth estimation of foundations whose depths are unknown is also very important in repair and reinforcement works or in safety inspection and assessment to the big structures. The cross-hole sonic logging(CSL) system and the single channel reflection seismic measurement system were developed to test the integrity of pile. The former is well applied to CIP structures, while the later to all kinds of piles with less accurate result compared to that of CSL. To estimate the depth of the deep foundations, parallel seismics, borehole RADAR, and borehole magnetics can be used.

  • PDF

Evaluation and interpretation of the effects of heterogeneous layers in an OBS/air-gun crustal structure study (OBS/에어건을 이용한 지각구조 연구에서 불균질층의 영향에 대한 평가와 해석)

  • Tsuruga, Kayoko;Kasahara, Junzo;Kubota, Ryuji;Nishiyama, Eiichiro;Kamimura, Aya;Naito, Yoshihiro;Honda, Fuminori;Oikawa, Nobutaka;Tamura, Yasuo;Nishizawa, Azusa;Kaneda, Kentaro
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.1
    • /
    • pp.1-14
    • /
    • 2008
  • We present a method for interpreting seismic records with arrivals and waveforms having characteristics which could be generated by extremely inhomogeneous velocity structures, such as non-typical oceanic crust, decollement at subduction zones, and seamounts in oceanic regions, by comparing them with synthetic waveforms. Recent extensive refraction and wide-angle reflection surveys in oceanic regions have provided us with a huge number of high-resolution and high-quality seismic records containing characteristic arrivals and waveforms, besides first arrivals and major reflected phases such as PmP. Some characteristic waveforms, with significant later reflected phases or anomalous amplitude decay with offset distance, are difficult to interpret using only a conventional interpretation method such as the traveltime tomographic inversion method. We find the best process for investigating such characteristic phases is to use an interactive interpretation method to compare observed data with synthetic waveforms, and calculate raypaths and traveltimes. This approach enables us to construct a reasonable structural model that includes all of the major characteristics of the observed waveforms. We present results here with some actual observed examples that might be of great help in the interpretation of such problematic phases. Our approach to the analysis of waveform characteristics is endorsed as an innovative method for constructing high-resolution and high-quality crustal structure models, not only in oceanic regions, but also in the continental regions.

Automatic velocity analysis using bootstrapped differential semblance and global search methods (고해상도 속도스펙트럼과 전역탐색법을 이용한 자동속도분석)

  • Choi, Hyung-Wook;Byun, Joong-Moo;Seol, Soon-Jee
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.31-39
    • /
    • 2010
  • The goal of automatic velocity analysis is to extract accurate velocity from voluminous seismic data with efficiency. In this study, we developed an efficient automatic velocity analysis algorithm by using bootstrapped differential semblance (BDS) and Monte Carlo inversion. To estimate more accurate results from automatic velocity analysis, the algorithm we have developed uses BDS, which provides a higher velocity resolution than conventional semblance, as a coherency estimator. In addition, our proposed automatic velocity analysis module is performed with a conditional initial velocity determination step that leads to enhanced efficiency in running time of the module. A new optional root mean square (RMS) velocity constraint, which prevents picking false peaks, is used. The developed automatic velocity analysis module was tested on a synthetic dataset and a marine field dataset from the East Sea, Korea. The stacked sections made using velocity results from our algorithm showed coherent events and improved the quality of the normal moveout-correction result. Moreover, since our algorithm finds interval velocity ($\nu_{int}$) first with interval velocity constraints and then calculates a RMS velocity function from the interval velocity, we can estimate geologically reasonable interval velocities. Boundaries of interval velocities also match well with reflection events in the common midpoint stacked sections.

AVO analysis using crossplot and amplitude polynomial methods for characterisation of hydrocarbon reservoirs (탄화수소 부존구조 평가를 위한 교차출력과 진폭다항식을 이용한 AVO 분석)

  • Kim, Ji-Soo;Kim, Won-Ki;Ha, Hee-Sang;Kim, Sung-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.25-41
    • /
    • 2011
  • AVO analysis was conducted on hydrocarbon-bearing structures by applying the crossplot and offset-coordinate amplitude polynomial techniques. To evaluate the applicability of the AVO analysis, it was conducted on synthetic data that were generated with an anticline model, and field data from the hydrocarbon-bearing Colony Sand bed in Canada. Analysis of synthetic data from the anticline model demonstrates that the crossplot method yields zero-offset reflection amplitude and amplitude variation with negative values for the upper interface of the hydrocarbon-bearing layer. The crossplot values are clustered in the third quadrant. The results of AVO analysis based on the coefficients of the amplitude polynomial are similar to those from the crossplots. These well correlated results of AVO analysis on field and synthetic data suggest that both methods successfully investigate the characteristics of the reflections from the upper interface of a hydrocarbon-bearing layer. Analysis based on the incident-angle equation facilitates the application of various interpretation methods. However, it requires the conversion of seismic data to an incident angle gather. By contrast, analysis using coefficients of the amplitude polynomial is cost-effective because it allows examining amplitude variation with offset without involving the conversion process. However, it warrants further investigation into versatile application. The two different techniques can be complement each other effectively as AVO-analysis tools for the detection of hydrocarbon reservoirs.