• Title/Summary/Keyword: reflection of light

Search Result 579, Processing Time 0.027 seconds

Pitch Variations in Cholesteric Liquid Crystal Film by Molecular Diffusion (분자 확산에 의한 콜레스테릭 액정 필름의 피치 변화)

  • Kwon Young-Jin;Lee Won-Ju;Kim Beom-Kyung;Kim In-Sun;Song Ki-Gook
    • Polymer(Korea)
    • /
    • v.30 no.5
    • /
    • pp.422-425
    • /
    • 2006
  • Due to their periodic helical structure, cholesteric liquid crystals (CLC) have a unique ability to selectively reflect visible light. CLC films reflecting a broad wavelength band were prepared by inducing a pitch gradient in CLC layers through a diffusion of small molecules and through a thermal mixing of cyclic siloxane CLC molecules with different pitch lengths. Various pitch gradients in the CLC cell were observed using UV/Vis spectrometer and SEM technique.

Real-time Ray-tracing Chip Architecture

  • Yoon, Hyung-Min;Lee, Byoung-Ok;Cheong, Cheol-Ho;Hur, Jin-Suk;Kim, Sang-Gon;Chung, Woo-Nam;Lee, Yong-Ho;Park, Woo-Chan
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.2
    • /
    • pp.65-70
    • /
    • 2015
  • In this paper, we describe the world's first real-time ray-tracing chip architecture. Ray-tracing technology generates high-quality 3D graphics images better than current rasterization technology by providing four essential light effects: shadow, reflection, refraction and transmission. The real-time ray-tracing chip named RayChip includes a real-time ray-tracing graphics processing unit and an accelerating tree-building unit. An ARM Ltd. central processing unit (CPU) and other peripherals are also included to support all processes of 3D graphics applications. Using the accelerating tree-building unit named RayTree to minimize the CPU load, the chip uses a low-end CPU and decreases both silicon area and power consumption. The evaluation results with RayChip show appropriate performance to support real-time ray tracing in high-definition (HD) resolution, while the rendered images are scaled to full HD resolution. The chip also integrates the Linux operating system and the familiar OpenGL for Embedded Systems application programming interface for easy application development.

Enhanced light extraction in GaN-bassed LED with embo type Al reflector (엠보형 Al 반사막을 이용한 GaN-based LED의 광추출 효율 향상)

  • Lee, Wan-Ho;Shin, Young-Chul;Kim, Eun-Hong;Kim, Chul-Min;Lee, Byoung-Gyu;Zhong, Yuan;Kim, Tae-Geun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.150-150
    • /
    • 2008
  • 고효율 LED를 얻기 위해서는 LED의 내부 양자효율과 외부 양자효율이 높아야 한다. 현재 GaN-Based LED의 내부 양자효율은 결정의 질의 개선 및 이중이종접합 또는 다중양자우물 구조와 같이 활성층의 캐리어 농도를 높이는 접합구조로 설계되어 거의 100%에 가까워졌다. 그러나 외부 양자효율은 반도체 재료의 높은 굴절률로 인하여 외부로 탈출하지 못하고 내부로 전반사 되어 반도체 내부에 갇히게 되는데 이처럼 갇힌 빛은 반도체와 중간 Interface에 TIR(total internal reflection) 또는 반사판에 의해 계속적으로 반사 된다. 그러므로 이를 해결하기 위한 플립칩 구조, 포토닉 크리스탈 등의 여러 가지 방법들이 제시되고 있지만 아직도 더 높은 외부 양자 효율의 개선을 요구하고 있다. 본 연구에서는 새로운 형태의 반사판(Al) 즉 p-GaN과 반사판 사이의 interlayer로 반사판과의 오믹 접촉을 고려한 Embo type의 NiO를 구현하여 반사된 빛의 방향을 내부반사를 줄일 수 있는 방향으로 변화시킴으로써 광 추출 효율의 향상을 기대할 수 있게 되었다.

  • PDF

A Study on Air Interface System (AIS) Using Infrared Ray (IR) Camera (적외선 카메라를 이용한 에어 인터페이스 시스템(AIS) 연구)

  • Kim, Hyo-Sung;Jung, Hyun-Ki;Kim, Byung-Gyu
    • The KIPS Transactions:PartB
    • /
    • v.18B no.3
    • /
    • pp.109-116
    • /
    • 2011
  • In this paper, we introduce non-touch style interface system technology without any touch style controlling mechanism, which is called as "Air-interface". To develop this system, we used the full reflection principle of infrared (IR) light and then user's hand is separated from the background with the obtained image at every frame. The segmented hand region at every frame is used as input data for an hand-motion recognition module, and the hand-motion recognition module performs a suitable control event that has been mapped into the specified hand-motion through verifying the hand-motion. In this paper, we introduce some developed and suggested methods for image processing and hand-motion recognition. The developed air-touch technology will be very useful for advertizement panel, entertainment presentation system, kiosk system and so many applications.

The Acceptance Testing of 5 Mega Pixels Primary Electronic Display Devices and the Study of Quality Control Guideline Suitable for Domestic Circumstance (5 Mega 화소 진단용 전자표시장치 인수검사 및 국내 실정에 적합한 정도관리 가이드라인 연구)

  • Jung, Hai-Jo;Kim, Hee-Joung;Kim, Sung-Kyu
    • Progress in Medical Physics
    • /
    • v.18 no.2
    • /
    • pp.98-106
    • /
    • 2007
  • In June 2005, Yonsei University Medical Center, Severance Hospital upgraded a full-PACS system by adding twenty (5 mega pixels) Totoku ME511L flat panel LCD display devices for diagnostic interpretation purposes. Here we report upon the quantitative (or visual) acceptance testing of the twenty Totoku ME511L display devices for reflection, luminance response, luminance spatial dependency, resolution, noise, veiling glare, and display chromaticity based on AAPM TG 18 report. The tools used in the tests included a telescopic photometer, which was used as a colorimeter, illuminance meter, light sources for reflection assessment, light-blocking devices, and digital TG18 test patterns. For selected 8 flat panel displays, mean diffuse reflection coefficient ($R_d$) was $0.019{\pm}0.02sr^{-1}$. In the luminance response test, luminance ratio (LR), maximum luminance difference ($L_{max}$), and deviation of contrast response were $550{\pm}100,\;2.0{\pm}1.9%\;and\;5.8{\pm}1.8%$, respectively. In the luminance uniformity test, maximum luminance deviation was $14.3{\pm}5.5%$ for the 10% luminance of the TG18-UNL10 test pattern. In the resolution test with luminance measurement method, percent luminance (${\Dalta}L$) at the center was $0.94{\pm}0.64%$. In all cases of noise testing, rectangular target In every square in the three quadrants was visible and all 15 targets except the smallest one in the every corner pattern and the center pattern. The glare ratio (GR) was $12,346{\pm}1,995$. The color uniformity, (u',v'), was $0.0025{\pm}0.0008$. Also, the research results of qualify control guideline of primary disply devices suitable for domestic circumstance are presented All test results are in-line with the criteria recommended by AAPM TG18 report and are thus fully acceptable for diagnostic image interpretation. As a result, the acceptance testing schedule described provides not only an acceptance standard but also guidelines for quality control, optimized viewing conditions, and a means for determining the upgrading time of LCD display devices for diagnostic interpretation.

  • PDF

Vehicle Headlight and Taillight Recognition in Nighttime using Low-Exposure Camera and Wavelet-based Random Forest (저노출 카메라와 웨이블릿 기반 랜덤 포레스트를 이용한 야간 자동차 전조등 및 후미등 인식)

  • Heo, Duyoung;Kim, Sang Jun;Kwak, Choong Sub;Nam, Jae-Yeal;Ko, Byoung Chul
    • Journal of Broadcast Engineering
    • /
    • v.22 no.3
    • /
    • pp.282-294
    • /
    • 2017
  • In this paper, we propose a novel intelligent headlight control (IHC) system which is durable to various road lights and camera movement caused by vehicle driving. For detecting candidate light blobs, the region of interest (ROI) is decided as front ROI (FROI) and back ROI (BROI) by considering the camera geometry based on perspective range estimation model. Then, light blobs such as headlights, taillights of vehicles, reflection light as well as the surrounding road lighting are segmented using two different adaptive thresholding. From the number of segmented blobs, taillights are first detected using the redness checking and random forest classifier based on Haar-like feature. For the headlight and taillight classification, we use the random forest instead of popular support vector machine or convolutional neural networks for supporting fast learning and testing in real-life applications. Pairing is performed by using the predefined geometric rules, such as vertical coordinate similarity and association check between blobs. The proposed algorithm was successfully applied to various driving sequences in night-time, and the results show that the performance of the proposed algorithms is better than that of recent related works.

In-situ Monitoring of GaN Epilayers by Spectral Reflectance (분광 반사법을 이용한 GaN 박막의 실시간 관찰)

  • Na, Hyun-Seok
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.5
    • /
    • pp.361-366
    • /
    • 2011
  • An in-situ, real-time monitoring of GaN epilayers grown by low pressure metalorganic chemical vapor deposition system modified for spectral reflectance was performed. Reflectance spectrums from 190~861 nm were observed using p-polarized light with incident angle of $75^{\circ}$. All reflectance spectrums showed interference oscillation caused by multiple reflection within GaN epilayers, and the spectrum from GaN with low crystalline quality showed weak reflectance intensity and much low amplitude of the oscillation because many defects in GaN resulted in light scattering and absorption. Signal variation of reflected light which was selected around strong constructive wavelength range was also observed during $NH_3$ supplying and $NH_3$ cut-off. There was no significant change in signal intensity when $NH_3$ cut-off for 10 sec, but it showed higher intensity when $NH_3$ was cut off for over 30 sec and its intensity kept unchanged. This result indicates that GaN surface was N-terminated during $NH_3$ supplying but Ga-terminated during $NH_3$ cut-off because of high nitrogen equilibrium vapor pressure of GaN, and metallic Ga-terminated surface caused slightly higher reflectance intensity.

Impact of the Planning CT Scan Time on the Reflection of the Lung Tumor Motion (전산화단층촬영 주사시간(Scan Time)이 폐종양운동의 재현성에 미치는 영향 분석)

  • Kim Su Ssan;Ha Sung Whan;Choi Eun Kyung;Yi Byong Yong
    • Radiation Oncology Journal
    • /
    • v.22 no.1
    • /
    • pp.55-63
    • /
    • 2004
  • Purpose : To evaluate the reflection of tumor motion according to the planning CT scan time. Material and Methods : A model of N-shape, which moved aiong the longitudinal axis during the ventilation caused by a mechanical ventilator, was produced. The model was scanned by planning CT, while setting the relative CT scan time (T: CT scan time/ventilatory period) to 0.33, 0.50, 0.67, 0.75, 1.00, 1.337, and 1.537. In addition, three patients with non-small cell lung cancer who received stereotactic radiosurgery In the Department of Radiation Oncology, Asan Medical Center from 03/19/2002 to 05/21/2002 were scanned. Slow (10 Premier, Picker, scan time 2.0 seconds per slice) and fast CT scans (Lightspeed, GE Medical Systems, with a scan time of 0.8 second per slice) were peformed for each patient. The magnitude of reflected movement of the N-shaped model was evaluated by measuring the transverse length, which reflected the movement of the declined bar of the model at each slice. For patients' scans, all CT data sets were registered using a stereotactic body frame scale with the gross tumor volumes delineated in one CT image set. The volume and three-dimensional diameter of the gross tumor volume were measured and analyzed between the slow and fast CT scans. Results : The reflection degree of longitudinal movement of the model increased in proportion to the relative CT scan times below 1.00 7, but remained constant above 1.00 T Assuming the mean value of scanned transverse lengths with CT scan time 1.00 T to be $100\%$, CT scans with scan times of 0.33, 0.50, 0.57, and 0.75 T missed the tumor motion by 30, 27, 20, and $7.0\%$ respectively, Slow (scan time 2.0 sec) and Fast (scan time 0.8 sec) CT scans of three patients with longitudinal movement of 3, 5, and 10 mm measured by fluoroscopy revealed the increases in the diameter along the longitudinal axis Increased by 6.3, 17, and $23\%$ in the slow CT scans. Conculsion : As the relative CT scan time increased, the reflection of the respiratory tumor movement on planning CT also Increased, but remained constant with relative CT scan times above 1.00 T When setting the planning CT scan time above one respiration period (>1.00 T), only the set-up margin is needed to delineate the planning target volume. Therefore, therapeutic ratio can be increased by reducing the radiation dose delivered to normal lung tissue.

Fiber-optic Temperature Sensor Using a Silicone Oil and an OTDR (OTDR을 이용한 실리콘 오일 기반의 광섬유 온도 센서)

  • Jang, Jae Seok;Yoo, Wook Jae;Shin, Sang Hun;Lee, Dong Eun;Kim, Mingeon;Kim, Hye Jin;Song, Young Beom;Jang, Kyoung Won;Cho, Seunghyun;Lee, Bongsoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.11
    • /
    • pp.1592-1597
    • /
    • 2015
  • In this study, we developed a fiber-optic temperature sensor (FOTS) based on a silicone oil and an optical time domain reflectometer (OTDR) to apply the measurement of a coolant leakage in the nuclear power plant. The sensing probe of the FOTS consists of a silicone oil, a stainless steel cap, a FC terminator, and a single mode optical fiber. Fresnel reflection arising at the interface between the silicone oil and the single mode optical fiber in the sensing probe is changed by varying the refractive index of the silicone oil according to the temperature. Therefore, we measured the optical power of the light signals reflected from the sensing probe. The measurable temperature range of the FOTS using a Cu-coated silica fiber is from $70^{\circ}C$ to $340^{\circ}C$ and the maximum operation temperature of the FOTS is sufficient for usage at the secondary system in the nuclear power plant.

COLOR DIFFERENCE OF THE DENTAL COMPOSITES MEASURED BY DIFFERENT COLOR MEASURING INSTRUMENTS (복합레진 색상의 측정 기기에 따른 차이)

  • Park, Su-Jung;Noh, Eun-Young;Cho, Hyun-Gu;Hwang, Yun-Chan;Oh, Won-Mann;Hwang, In-Nam
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.3
    • /
    • pp.199-207
    • /
    • 2009
  • The objective of this study was to evaluate the effect of color measuring instrument by measuring the color of dental composite resins. Nine shade light cured composite resin disks were prepared (diameter : 15 mm, thickness : 4 mm). CIE $L^*a^*b^*$ color scale of each disk was measured with 3 different types of spectrophotometer [MiniScan XE plus (Model 4000S, Hunter Lab, USA), CM-3500d (Minolta, Japan) and Specbos 2100 Miniature VIS Reflection spectrometer (Serial No: 319416, JETI Technishe VIS Instrumentic GmbH. Germany)]. Miniscan XE Plus and CM-3500d using identical measuring geometry with different size of viewing aperture. But Specbos 2100 using different measuring geometry. Within the limitation of this study, there were color difference (${\Delta}E^*$) from 2.4 to 7.8 between Miniscan XE Plus and CM-3500d, but $L^*$, $a^*$, $b^*$ values showed the high correlation. However, there were great color difference (${\Delta}E^*$) in the extent of about 20 between instruments with the different measuring geometry. Therefore, color scale measured by color measuring instrument should be used as a relative value rather than an absolute value in the field of dentistry.