• Title/Summary/Keyword: reflectance model

Search Result 331, Processing Time 0.031 seconds

An Experimental Approach for Modeling the Appearance of Metallic Painted Surfaces (메탈릭 페인트로 코팅된 재질의 모델링 방법에 관한 연구)

  • Chowdhury, Mijanur Rahaman;Kim, Kang-Yeon;Yoo, Hyun-Jin;Ko, Kwang-Hee;Lee, Kwan-H.
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.1037-1044
    • /
    • 2007
  • Metallic paint is one of the most widely used coating in automotive, cosmetic and other applications because of its well-known ability to give a product realistic look which creates widespread consumer appeal. But, this coating has complicated subsurface structure which includes pigments, flakes, and transparent clearcoat. Though various analytic reflection models are available to simulate appearance of various surfaces, it is difficult to select an appropriate reflection model with faithful parameters for simulating this coating due to the complex subsurface structure of metallic paints. This paper presents a framework for accurate modeling of metallic coating by determining an appropriate reflection model among various existing BRDF (Bidirectional Reflectance Distribution Function) models. The selection of the appropriate model is achieved by measuring BRDF of various metallic paint samples using a BRDF measuring device i.e. gonioreflectometer and fitting an existing model to the measured data. Then, this model is effectively realized by rendering metallic painted surfaces. We believe that this framework can serve as a guide for those who wants to render metallic painted surfaces accurately with analytic BRDF model without expending time on extracting BRDF data using gonioreflectometer from real metallic paint sample.

  • PDF

A Study on the Retrievals of Downward Solar Radiation at the Surface based on the Observations from Multiple Geostationary Satellites (정지궤도 위성자료를 이용한 지표면 도달 태양복사량 연구)

  • Jee, Joon-Bum;Zo, Il-Sung;Lee, Kyu-Tae
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.123-135
    • /
    • 2013
  • The reflectance observed in the visible channels of a geostationary meteorological satellite can be used to calculate the amount of cloud by comparing the reflectance with the observed solar radiation data at the ground. Using this, the solar radiation arriving at the surface can be estimated. This study used the Meteorological Imager (MI) reflectance observed at a wavelength of 675 nm and the Geostationary Ocean Color Imager (GOCI) reflectance observed at similar wavelengths of 660 and 680 nm. Cloudy days during a typhoon and sunny days with little cloud cover were compared using observation data from the geostationary satellite. Pixels that had more than 40% reflectance in the satellite images showed less than 0.3 of the cloud index and blocked more than 70% of the solar energy. Pixels that showed less than 15% reflectance showed more than 0.9 of the cloud index and let through more than 90% of the solar energy to the surface. The calculated daily accumulated solar radiation was compared with the observed daily accumulated solar radiation in 22 observatories of the Korean Meteorological Administration. The values calculated for the COMS and MTSAT MI sensors were smaller than the observation and showed low correlations of 0.94 and 0.93, respectively, which were smaller than the 0.96 correlation coefficient calculated for the GOCI sensor. The RMSEs of MTSAT, COMS MI and GOCI calculation results showed 2.21, 2.09, 2.02 MJ/$m^2$ in order. Comparison of the calculated daily accumulated results from the GOCI sensor with the observed data on the ground gave correlations and RMSEs for cloudy and sunny days of 0.96 and 0.86, and 1.82 MJ/$m^2$ and 2.27 MJ/$m^2$, respectively, indicating a slightly higher correlation for cloudy days. Compared to the meteorological imager, the geostationary ocean color imager in the COMS satellite has limited observation time and observation is not continuous. However, it has the advantage of providing high resolution so that it too can be useful for solar energy analysis.

The Relationship between NDVI and Forest Leaf Area Index in MODIS Land Product

  • Woo C.S.;Lee K.S.;Kim K.T.;Lee S.H.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.166-169
    • /
    • 2004
  • NDVI has been used to estimate several ecological variables including leaf area index (LAI). Global MODIS LAI data are partially produced by empirical model that is based on the assumption of high correlation between NDVI and LAI. This study attempts to evaluate the MODIS empirical model by comparing with the result obtained from field LAI measurement and Landsat ETM+ reflectance. MODIS LAI product and ancillary data were analyzed over a small forest watershed near the Seoul metropolitan area. The relationship between NDVI of ETM+ and field measured LAI did not correspond to MODIS LAI estimation. Since the study area is mostly covered by very dense and fully closed forest, the correlation between NDVI and LAI might not be high. Although MODIS LAI product has great potential for global environment studies, it needs to be cautious to use them in regional and local area in particular for the forest of dense canopy situation.

  • PDF

Characteristics of PM2.5 in Gyeongsan Using Statistical Analysis (통계분석을 이용한 경산 지역의 초미세먼지(PM2.5) 농도 특성 파악)

  • Li, Kai Chao;Hwang, InJo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.6
    • /
    • pp.520-529
    • /
    • 2015
  • The ambient $PM_{2.5}$ samples were collected by $PM_{2.5}$ sampler from September 2010 to December 2012 at Daegu University, Gyeongsan. A total of 260 samples were collected and 27 species were analyzed by inductively coupled plasma, ion chromatography, and thermal optical reflectance methods. Factor analysis identified four sources such as biomass burning source/secondary aerosol source, soil source, industry source, and incinerator source/mobile source. Also, backward trajectories were calculated using HYSPLIT 4 (Hybrid single-particle lagrangian integrated trajectory) model and PSCF (Potential source contribution function) model was applied to identify the possible source locations of carbonaceous species and water soluble ions species. PSCF results showed that the possible source locations of most chemical constituents measured in Gyeongsan were the industrial areas in the eastern coast of China, northeast regions of China, the Gobi Desert, and east sea of Korea.

Local Structure Invariant Potential for InxGa1-xAs Semiconductor Alloys

  • Sim, Eun-Ji;Han, Min-Woo;Beckers, Joost;De Leeuw, Simon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.857-862
    • /
    • 2009
  • We model lattice-mismatched group III-V semiconductor $In_{x}Ga_{1-x}$ alloys with the three-parameter anharmonic Kirkwood-Keating potential, which includes realistic distortion effect by introducing anharmonicity. Although the potential parameters were determined based on optical properties of the binary parent alloys InAs and GaAs, simulated dielectric functions, reflectance, and Raman spectra of alloys agree excellently with experimental data for any arbitrary atomic composition. For a wide range of atomic composition, InAs- and GaAs-bond retain their respective properties of binary parent crystals despite lattice and charge mismatch. It implies that use of the anharmonic Kirkwood-Keating potential may provide an optimal model system to investigate diverse and unique optical properties of quantum dot heterostructures by circumventing potential parameter searches for particular local structures.

Estimation of Spectral Radiant Distribution of Illumination and Corresponding Color Reproduction According to Viewing Conditions (광원의 분광 방사 분포의 추정과 관찰조건에 따른 대응적 색재현)

  • 방상택;이철희;곽한봉;유미옥;안석출
    • Proceedings of the Korean Printing Society Conference
    • /
    • 2000.04a
    • /
    • pp.35-44
    • /
    • 2000
  • Because Image on the CRT change under different illuminants, human is difficult to see original color of object. If what is information of used illuminant on capturing object know, image can be transformed according to viewing condition using the linear matrix method. To know information of used illuminant at an image, the spectral radiance of illuminant can be estimated using the linear model of Maloney and Wandell form an image. And then image can be properly transformed it using color appearance model. In this paper, we predict the spectral radiance of illuminant using spectral power distribution of specular light and using surface spectral reflectance at maximum gray area. and then we perform visual experiments for the corresponding color reproduction according to viewing condition. In results, we ensure that the spectral radiance of illuminant at an image can be well estimated using above algorithms and that human visual system is 70% adapted to the monitor's white point and 30% to ambient light when viewing softcopy images.

Measurement of skin moisture using a FT-NIR spectrometer

  • Suh, Eun-Jung;Woo, Young-Ah;Kim, Hyo-Jin
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.218.3-218.3
    • /
    • 2003
  • In this study, a FT-NIR spectroscopy was used to determine skin moisture. NIR diffuse reflectance spectra were collected from separated dorsal and abdominal hairless mouse skin. Partial least squares regression (PLSR) was applied to develop calibration models that determine the water content. The seven spectra regions, such as 833-2500, 1100-2250, 1100-1750, 1750-2250, 1200-1600, 1800-2200, and 1200-2200 except 1600-1800 nm, were investigated for the best model by PLSR. The developed model predicted skin moisture for validation set with a standard errors of prediction (SEP) of 4.43%, when used 833-2500 nm. (omitted)

  • PDF

Development of Suspended Sediment Algorithm for Landsat TM/ETM+ in Coastal Sea Waters - A Case Study in Saemangeum Area - (Landsat TM/ETM+ 연안 부유퇴적물 알고리즘 개발 - 새만금 주변 해역을 중심으로 -)

  • Min Jee-Eun;Ahn Yu-Hwan;Lee Kyu-Sung;Ryu Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.2
    • /
    • pp.87-99
    • /
    • 2006
  • The Median Resolution Sensors (MRSs) for land observation such as Landsat-ETM+ and SPOT-HRV are more effective than Ocean Color Sensors (OCSs) for studying of detailed ecological and biogeochemical components of the coastal waters. In this study, we developed suspended sediment algorithm for Landsat TM/ETM+ by considering the spectral response curve of each band. To estimate suspended sediment concentration (SS) from satellite image data, there are two difference types of algorithms, that are derived for enhancing the accuracy of SS from Landsat imagery. Both empirical and remote sensing reflectance model (hereafter referred to as $R_{rs}$ model) are used here. This study tried to compare two algorithm, and verified using in situ SS data. It was found that the empirical SS algorithm using band 2 produced the best result. $R_{rs}$ model-based SS algorithm estimated higher values than empirical SS algorithm. In this study we used $R_{rs}$ model developed by Ahn (2000) focused on the Mediterranean coastal area. That's owing to the difference of oceanic characteristics between Mediterranean and Korean coastal area. In the future we will improve that $R_{rs}$ model for the Korean coastal area, then the result will be advanced.

GOCI-II Capability of Improving the Accuracy of Ocean Color Products through Fusion with GK-2A/AMI (GK-2A/AMI와 융합을 통한 GOCI-II 해색 산출물 정확도 개선 가능성)

  • Lee, Kyeong-Sang;Ahn, Jae-Hyun;Park, Myung-Sook
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1295-1305
    • /
    • 2021
  • Satellite-derived ocean color products are required to effectively monitor clear open ocean and coastal water regions for various research fields. For this purpose, accurate correction of atmospheric effect is essential. Currently, the Geostationary Ocean Color Imager (GOCI)-II ground segment uses the reanalysis of meteorological fields such as European Centre for Medium-Range Weather Forecasts (ECMWF) or National Centers for Environmental Prediction (NCEP) to correct gas absorption by water vapor and ozone. In this process, uncertainties may occur due to the low spatiotemporal resolution of the meteorological data. In this study, we develop water vapor absorption correction model for the GK-2 combined GOCI-II atmospheric correction using Advanced Meteorological Imager (AMI) total precipitable water (TPW) information through radiative transfer model simulations. Also, we investigate the impact of the developed model on GOCI products. Overall, the errors with and without water vapor absorption correction in the top-of-atmosphere (TOA) reflectance at 620 nm and 680 nm are only 1.3% and 0.27%, indicating that there is no significant effect by the water vapor absorption model. However, the GK-2A combined water vapor absorption model has the large impacts at the 709 nm channel, as revealing error of 6 to 15% depending on the solar zenith angle and the TPW. We also found more significant impacts of the GK-2 combined water vapor absorption model on Rayleigh-corrected reflectance at all GOCI-II spectral bands. The errors generated from the TOA reflectance is greatly amplified, showing a large error of 1.46~4.98, 7.53~19.53, 0.25~0.64, 14.74~40.5, 8.2~18.56, 5.7~11.9% for from 620 nm to 865 nm, repectively, depending on the SZA. This study emphasizes the water vapor correction model can affect the accuracy and stability of ocean color products, and implies that the accuracy of GOCI-II ocean color products can be improved through fusion with GK-2A/AMI.

Determination of Human Skin Moisture in the Near-Infrared Region from 1100 to 2200 nm by Portable NIR System (1100∼2200 nm 파장 영역의 휴대용 근적외선 분광분석기를 이용한 사람피부의 수분측정)

  • 안지원;서은정;우영아;김효진
    • YAKHAK HOEJI
    • /
    • v.47 no.3
    • /
    • pp.148-153
    • /
    • 2003
  • Skin moisture is an important factor in skin health. Measurement of moisture content can provide diagnostic information on the condition of skin. In this study, a portable near-infrared (NIR) system was newly integrated with a photo diode array detector that has no moving parts, and this system has been successfully applied for the evaluation of human skin moisture. Diffuse reflectance spectra were collected and transformed to absorbance using 1 nm step size over the wavelength range of 1100 nm to 2200 nm. Partial least squares regression (PLSR) was applied to develop a calibration model. For practical use for the evaluation of human skin moisture, the PLS model for human skin moisture was developed in vivo using the portable NIR system on the basis of the relative water content values of stratum corneum from the conventional capacitance method. The PLS model showed a good correlation. The calibration with the use of PLS model predicted human moisture with a standard error of prediction (SEP) of 3.5 at 1120∼1730 nm range. This study showed the possibility of skin moisture measurement using portable NIR system.