• 제목/요약/키워드: reflectance

Search Result 1,906, Processing Time 0.034 seconds

Impact of a New Formula on the Fresnel Reflectance on Microwave Remote Sensing

  • Qing, Xu;Yuguang, Liu
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1340-1342
    • /
    • 2003
  • In microwave remote sensing, the Fresnel reflectance formula is widely used in the sea surface emissivity modeling. As an essential contribution to microwave remote sensing, a new formula on the Fresnel reflectance has been derived based on our understanding of the complex index of refraction and continuity condition of E-M waves at the interface between two mediums. The proposed formula can be used to obtain the emissivity of sea surface, which is useful to retrieve sea surface temperature, sea surface salinity and the brightness temperature. Considering Bragg-resonant scatter, it is useful for the calculation of the normalized radar cross-section, and the retrieval of sea surface wind either.

  • PDF

Reflectance Measurements of Soil Variability

  • Sudduth, K.A.;Hong, S.Y.;Hummel, J.W.;Kitchen, N.R.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1194-1196
    • /
    • 2003
  • Variations in soil physical and chemical properties can affect agricultural productivity and the environmental implications of crop production. These variations are present and may be important at regional, field, and sub-field (precision agriculture) scales. Because traditional measurements are time-consuming and expensive, reflectance-based estimates of soil properties such as texture, organic matter content, water content, and nutrient status are attractive. Soil properties have been related to reflectance measured with laboratory, in-field, airborne, and satellite sensors. Both multispectral and hyperspectral instruments have been used, with both natural and artificial illumination. Varying levels of accuracy have been obtained, with the best results (r > 0.95) using hyperspectral reflectance data to estimate soil organic matter and water content.

  • PDF

Bi-directional Reflectance Effects on Mangrove Classification of IKONOS Multi-angular Images

  • Rubio, M.C.D.;Nadaoka, K.;Paringit, E.C.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.4-6
    • /
    • 2003
  • Optical signals from an object may vary at different conditions caused by differences in light source and sensor position. Knowledge of these variations is necessary to enable calibration of the satellite images and confirmation of the sun and sensor angles influences of the spectral signals from the objects. With the use high -resolution Ikonos$^{TM}$ multi-angular images, the bi- directional reflectance effects of mangrove trees were observed when three datasets were compared. The influence of bi- directional reflectance may affect the accuracy of interpreting satellite imagery and obtaining biophysical parameters mangrove and other vegetation by indirect means.

  • PDF

Spectral Analysis of Igneous and Sedimentary Rocks (화성암과 퇴적암의 분광특성분석)

  • 강필종;조민조;이봉주
    • Korean Journal of Remote Sensing
    • /
    • v.6 no.1
    • /
    • pp.49-62
    • /
    • 1990
  • The study is aimed to analize the spectral characteristics of igneous and sedimentary rocks in their reflectance curves obtained from CARY 17-D Spectrophotometer, and correlation between chemical complsition and HHRR data. The reflectance is higher in acidic igneous rocks, while lower in basic igneous rocks. Especially acidic plutonic rocks show sharp absorption bands at 1.4 and 1.9 $\mu\textrm{m}$ due to water inclusion in felsic minerals and basic rocks a broad absoption band near 1.mu.m due to Fe$^{++}$ ion in mafic minerals. Sandstones generally have higher reflectance than siltstones and shales, and show strong absorption at 1.4 and 1.9 $\mu\textrm{m}$. Arkosic sandstones have lower reflectance at blue band due to Fe$^{+++}$ ion exsolved from feldspars. The HHRR data have a positive correlation with SiO$_2$ and $K_2$O, while they have a negative correlation with FeO and MgO.

Comparison of Two Semi-Empirical BRDF algorithms using SPOT/VGT

  • Lee, Chang Suk;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.3
    • /
    • pp.307-314
    • /
    • 2013
  • The Bidirectional Reflectance Distribution (BRD) effect is critical to interpret the surface information using remotely sensed data. This effect was caused by geometric relationship between sensor, target and solar that is inevitable effect for data of optical sensor. To remove the BRD effect, semi-empirical BRDF models are widely used. It is faster to calculate than physical models and demanded less observation than empirical models. In this study, Ross-Li kernel and Roujean kernel were used respectively in National Aeronautics and Space Administration (NASA) and European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) that are used to compare each other. The semi-empirical model consists of three parts which are isotropic, geometric and volumetric scattering. Each part contained physical kernel and empirical coefficients that were calculated by statistical method. Red and NIR channel of SPOT/VEGETATION product were used to compute Nadir BRDF Adjusted Reflectance (NBAR) over East Asia area from January 2009 to December 2009. S1 product was provided by VITO that was conducted atmospheric correction using Simplified Method of Atmospheric Correction (SMAC). NBAR was calculated using corrected reflectance of red and NIR. Previous study has revealed that Roujean geometric kernel had unphysical values in large zenith angles. We extracted empirical coefficients in three parts and normalized reflectance to compare both BRDF models. Two points located forest in Korea peninsular and bare land in Gobi desert were selected for comparison. As results of time series analysis, both models showed similar reflectance change pattern and reasonable values. Whereas in case of empirical coefficients comparison, different changes pattern of values were showed in isotropic coefficients.

Influence of Manufacturing Conditions on the Reflectance and Life Time of the Gold Protected IR Mirror (금 증착 적외선 반사판의 반사율 및 수명에 미치는 제조공정 변수의 영향)

  • Choi, Yong-Sun;Lee, Young-Ki;Lee, You-Kee
    • Korean Journal of Materials Research
    • /
    • v.28 no.4
    • /
    • pp.201-207
    • /
    • 2018
  • Infrared(IR) heating has many advantages, such as energy efficiency, reduced heating time, cleanliness, equipment compactness, high drying rate and easy automation. These features of IR heating provide widely industrial applications, such as surface heat treatment in semiconductor fabrication, thermoforming of polymers, drying and disinfection of food products, heating to metal forging, and drying of wet materials. In this study, the characteristics of a protected gold mirror were examined by spectrophotometer and the lifetime of the coating layers were evaluated by a cross-cutting method and salt spray test. The effects of manufacturing conditions on the protected gold mirror were seen and remedies for these effects were noted in order to improve the properties of the protected gold mirror in the drying process. The reflectance and lifetime of the protected gold mirror was influenced by manufacturing conditions, such as surface roughness and forming conditions of the anti-oxide layer, the adhesion layer, the reflecting layer and the protection layer. The results of this study showed that the protected gold mirror manufactured using a buffing method for pre-treatment resulted in the most effective reflectance. In addition, $Al_2O_3$ coating on an Al substrate as an anti-oxide layer was more effective than the anodizing process in the test of reflectance. Furthermore, the protected gold mirror manufactured by layers forming of various materials resulted in the most effective reflectance and lifetime when coated with $Al_2O_3$ as the anti-oxide layer, coated Cr as the adhesion layer, and coated $MgF_2$ as the protection layer.

Two-dimensional model simulation for reflectance of single crystalline silicon solar cell (단결정 실리콘 태양전지 2차원 모델의 반사율 시뮬레이션)

  • Lee, Sang-Hun;Kang, Gi-Hwan;Yu, Gwon-Jong;Ahn, Hyung-Keun;Han, Deuk-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.237-242
    • /
    • 2012
  • At present, crystalline solar cells take up a significant percentage of the solar industry. The ways of increasing the efficiency of crystalline solar cell are texturing and AR(Anti-Reflection) coating, and the purpose of these technologies is to increase the amount of available light on the solar cell by reducing the reflectivity. The reflectance of crystalline silicon solar cell combined with such technologies will be able to predict using the proposed simulation in this paper. The simulation algorithm was made using MATLAB, and it is a combination of the theories of reflection in textured wafer and in anti-reflection coated wafer. The simulation results were divided into three wavelength band and were compared with actual reflectance measured by a spectrometer. The wavelength band from 300 to 380 was named ultraviolet region and the wavelength band from 380 to 780 is named visible region. Finally, the wavelength band from 780 to 1200 named infrared region. When compared with measured reflection data, the simulation results had a small error from 0.4 to 0.5[%] in visible region. The error occurred in the rest two regions is larger than visible region. The extreme error occurred the infrared region is due to internal reflection effect, but in the ultraviolet region, the rationale on reduction phenomenon of reflectance occurred in small range did not proved. If these problem will be solve, this simulation will have high reliability more than now and be able to predict the reflectance of solar cells.

  • PDF

Analysis of Chlorophyll Reflectance and Assessment of Trophic State for Daecheong Reservoir Using Remote Sensing (클로로필의 반사특성 분석과 원격탐측을 이용한 대청호의 영양상태 평가)

  • Kim, Tae-Geun;Kim, Tae-Seung;Cho, Gi-Sung;Kim, Hwan-Gi
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.4 no.2 s.8
    • /
    • pp.35-45
    • /
    • 1996
  • The reflectance of chlorophyll was measured using UV-VIS spectrophotometer with the reflectance integrator in the laboratory in order to define its spectral characteristics. Sharp peaks appear at around 485nm and 655nm due to fluorescence and scattering, and the reflectance of chlorophyll increases at 580nm. With the increase in the chlorophyll concentration, the reflectance also increases. We have applied TM data to the reflectance spectrum of chlorophyll and have developed two formula with which one can estimate the chlorophyll concetration. Satellite re sensing, with its synoptic overage, is used to obtain the chlorophyll concentration in Daecheong reservoir. The approach involved acquisition of water quality samples front boat simultaneous with Landsat 5 satellite overpass. The remotely-sensed data and the ground truth data were obtained oil 20 June 1995 and on 18 March 1996. Regression models have been developed between the chlorophyll concentration and Landsat Thematic Mapper digital data. As the regression model was determined based on the correlation coefficient which was higher than 0.7 and the spectral characteristics of chlorophyll, and we have applied it to the entire study area to genelate a distribution map of trophic state. According to the trophic state map made based upon Aizaki's TSI and chlorophyll a concentration, the area where Okchun stream was flowing into was shown to be polluted the most all over the Daechung reservoir by showing an eutrophic state in June 1995 and a mesotrophic state in March 1996.

  • PDF

A Study on the Application of Ag Nano-Dots Structure to Improve the Light Trapping Effect of Crystalline Silicon Solar Cell (단결정 실리콘 태양전지의 광 포획 효과 개선을 위한 Ag nano-dots 구조 적용 연구)

  • Choi, Jeong-Ho;Roh, Si-Cheol;Seo, Hwa-Il
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.19-24
    • /
    • 2019
  • In this study, the Ag nano-dots structure was applied to the textured wafer surface to improve the light trapping effect of crystalline silicon solar cell. The Ag nano-dots structure was formed by the annealing of Ag thin film. Ag thin film deposition was performed using a thermal evaporator. The effect of light trapping was compared and analyzed through light reflectance measurements. The optimization process of the Ag nano-dots structure was made by varying the thickness of Ag thin film, the annealing temperature and time. The thickness of Ag thin films was in the range of 5 ~ 20 nm. The annealing temperature was in the range of 450~650℃ and the annealing time was in the range of 30 ~ 60 minutes. As a result, the light reflectance of 10 nm Ag thin film annealed at 650℃ for 30 minutes showed the lowest value of about 9.67%. This is a value that is about 3.37% lower than the light reflectance of the sample that has undergone only the texturing process. Finally, the change of the light reflectance by the HF treatment of the sample on which the Ag nano-dots structure was formed was investigated. The HF treatment time was in the range of 0 ~ 120 seconds. As a result, the light reflectance decreased by about 0.41% due to the HF treatment for 75 seconds.