• Title/Summary/Keyword: refined theory

Search Result 285, Processing Time 0.019 seconds

A refined nonlocal hyperbolic shear deformation beam model for bending and dynamic analysis of nanoscale beams

  • Bensaid, Ismail
    • Advances in nano research
    • /
    • v.5 no.2
    • /
    • pp.113-126
    • /
    • 2017
  • This paper proposes a new nonlocal higher-order hyperbolic shear deformation beam theory (HSBT) for the static bending and vibration of nanoscale-beams. Eringen's nonlocal elasticity theory is incorporated, in order to capture small size effects. In the present model, the transverse shear stresses account for a hyperbolic distribution and satisfy the free-traction boundary conditions on the upper and bottom surfaces of the nanobeams without using shear correction factor. Employing Hamilton's principle, the nonlocal equations of motion are derived. The governing equations are solved analytically for the edges of the beam are simply supported, and the obtained results are compared, as possible, with the available solutions found in the literature. Furthermore, the influences of nonlocal coefficient, slenderness ratio on the static bending and dynamic responses of the nanobeam are examined.

Effect of the micromechanical models on the bending of FGM beam using a new hyperbolic shear deformation theory

  • Zouatnia, Nafissa;Hadji, Lazreg
    • Earthquakes and Structures
    • /
    • v.16 no.2
    • /
    • pp.177-183
    • /
    • 2019
  • In this paper, a new refined hyperbolic shear deformation beam theory for the bending analysis of functionally graded beam is presented. The theory accounts for hyperbolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the functionally graded beam without using shear correction factors. In addition, the effect of different micromechanical models on the bending response of these beams is studied. Various micromechanical models are used to evaluate the mechanical characteristics of the FG beams whose properties vary continuously across the thickness according to a simple power law. Based on the present theory, the equilibrium equations are derived from the principle of virtual work. Navier type solution method was used to obtain displacement and stresses, and the numerical results are compared with those available in the literature. A detailed parametric study is presented to show the effect of different micromechanical models on the flexural response of a simply supported FG beams.

Thermal vibration analysis of FGM beams using an efficient shear deformation beam theory

  • Safa, Abdelkader;Hadji, Lazreg;Bourada, Mohamed;Zouatnia, Nafissa
    • Earthquakes and Structures
    • /
    • v.17 no.3
    • /
    • pp.329-336
    • /
    • 2019
  • An efficient shear deformation beam theory is developed for thermo-elastic vibration of FGM beams. The theory accounts for parabolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the on the surfaces of the beam without using shear correction factors. The material properties of the FGM beam are assumed to be temperature dependent, and change gradually in the thickness direction. Three cases of temperature distribution in the form of uniformity, linearity, and nonlinearity are considered through the beam thickness. Based on the present refined beam theory, the equations of motion are derived from Hamilton's principle. The closed-form solutions of functionally graded beams are obtained using Navier solution. Numerical results are presented to investigate the effects of temperature distributions, material parameters, thermal moments and slenderness ratios on the natural frequencies. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions.

Preceptees' Experiences of Nursing Students in the Clinical Practice with Preceptorship: "Being refined while taking a firm stand with lack" (간호대학생의 임상실습에서 프리셉티 경험: "모자라지만 꿋꿋이 버텨 다듬어지기")

  • Park, Jeong Sook;Park, Young Suk
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • v.24 no.2
    • /
    • pp.168-180
    • /
    • 2018
  • Purpose: The purpose of this study was to explore preceptees' experience among nursing students in the Clinical Nursing Practice program as integral practice. Specific aims were to identify problems students face as preceptees at a clinical practice and how they interact with preceptors and others. Methods: Grounded theory methodology was utilized. Data were collected from interactive field notes and transcribed notes with individual in-depth interview from 12 senior nursing students who had experiences as a preceptee in the Clinical Nursing Practice. Results: Through constant comparative analysis, a core category emerged as "Being refined while taking a firm stand with lack." The process of "Being refined while taking a firm stand with lack" consisted of four phases: sailing phase, adaptation phase, achievement phase and wistful returning phase. Conclusion: The findings of the study indicate that there is a need for nursing students to understand the limitations and strengths to learning experiences in preceptorship. In addition, the Clinical Nursing Practice as an integral practice program is needed to improve nursing capacity and for proper adaptation to real clinical environment among graduating students.

Finite element based post-buckling analysis of refined graphene oxide reinforced concrete beams with geometrical imperfection

  • Mirjavadi, Seyed Sajad;Forsat, Masoud;Yahya, Yahya Zakariya;Barati, Mohammad Reza;Jayasimha, Anirudh Narasimamurthy;Khan, Imran
    • Computers and Concrete
    • /
    • v.25 no.4
    • /
    • pp.283-291
    • /
    • 2020
  • The present paper researches post-buckling behaviors of geometrically imperfect concrete beam resting on elastic foundation reinforced with graphene oxide powders (GOPs) based on finite element method (FEM). Distribution of GOPs are considered as uniform and linearly graded through the thickness. Geometric imperfection is considered as first buckling mode shape of the beam, the GOP reinforced beam is rested in initial position. The material properties of GOP reinforced composite have been calculated via employment of Halpin-Tsai micromechanical scheme. The provided refined beam element verifies the shear deformation impacts needless of any shear correction coefficient. The post-buckling load-deflections relations have been calculated via solving the governing equations having cubic non-linearity implementing FEM. Obtained findings indicate the importance of GOP distributions, GOP weight fraction, matrix material, geometric imperfection, shear deformation and foundation parameters on nonlinear buckling behavior of GOP reinforced beam.

A refined discrete triangular Mindlin element for laminated composite plates

  • Ge, Zengjie;Chen, Wanji
    • Structural Engineering and Mechanics
    • /
    • v.14 no.5
    • /
    • pp.575-593
    • /
    • 2002
  • Based on the Mindlin plate theory, a refined discrete 15-DOF triangular laminated composite plate finite element RDTMLC with the re-constitution of the shear strain is proposed. For constituting the element displacement function, the exact displacement function of the Timoshenko's laminated composite beam as the displacement on the element boundary is used to derive the element displacements. The proposed element can be used for the analysis of both moderately thick and thin laminated composite plate, and the convergence for the very thin situation can be ensured theoretically. Numerical examples presented show that the present model indeed possesses the properties of higher accuracy for anisotropic laminated composite plates and is free of locking even for extremely thin laminated plates.

Higher order free vibration of sandwich curved beams with a functionally graded core

  • Fard, K. Malekzadeh
    • Structural Engineering and Mechanics
    • /
    • v.49 no.5
    • /
    • pp.537-554
    • /
    • 2014
  • In this paper, free vibration of a sandwich curved beam with a functionally graded (FG) core was investigated. Closed-form formulations of two-dimensional (2D) refined higher order beam theory (RHOBT) without neglecting the amount of z/R was derived and used. The present RHOBT analysis incorporated a trapezoidal shape factor that arose due to the fact that stresses through the beam thickness were integrated over a curved surface. The solutions presented herein were compared with the available numerical and analytical solutions in the related literature and excellent agreement was obtained. Effects of some dimensionless parameters on the structural response were investigated to show their effects on fundamental natural frequency of the curved beam. In all the cases, variations of the material constant number were calculated and presented. Effect of changing ratio of core to beam thickness on the fundamental natural frequency depended on the amount of the material constant number.

Free vibration analysis of axially moving laminated beams with axial tension based on 1D refined theories using Carrera unified formulation

  • Daraei, Behnam;Shojaee, Saeed;Hamzehei-Javaran, Saleh
    • Steel and Composite Structures
    • /
    • v.37 no.1
    • /
    • pp.37-49
    • /
    • 2020
  • In this paper, free vibration finite element analysis of axially moving laminated composite beams subjected to axial tension is studied. It is assumed that the beam has a constant axial velocity and is subject to uniform axial tension. The analysis is based on higher-order theories that have been presented by Carrera Unified Formulation (CUF). In the CUF technique, the three dimensional (3D) displacement fields are expressed as the approximation of the arbitrary order of the displacement unknowns over the cross-section. This higher-order expansion is considered in equivalent single layer (ESL) model. The governing equations of motion are obtained via Hamilton's principle. Finally, several numerical examples are presented and the effect of the ply-angle, travelling speed and axial tension on the natural frequencies and beam stability are demonstrated.

Nonlocal nonlinear stability of higher-order porous beams via Chebyshev-Ritz method

  • Ahmed, Ridha A.;Mustafa, Nader M.;Faleh, Nadhim M.;Fenjan, Raad M.
    • Structural Engineering and Mechanics
    • /
    • v.76 no.3
    • /
    • pp.413-420
    • /
    • 2020
  • Considering inverse cotangential shear strain function, the present paper studies nonlinear stability of nonlocal higher-order refined beams made of metal foams based on Chebyshev-Ritz method. Based on inverse cotangential beam model, it is feasible to incorporate shear deformations needless of shear correction factor. Metal foam is supposed to contain different distributions of pores across the beam thickness. Also, presented Chebyshev-Ritz method can provide a unified solution for considering various boundary conditions based on simply-supported and clamped edges. Nonlinear effects have been included based upon von-karman's assumption and nonlinear elastic foundation. The buckling curves are shown to be affected by pore distribution, geometric imperfection of the beam, nonlocal scale factor, foundation and geometrical factors.

On buckling analysis of laminated composite plates using a nonlocal refined four-variable model

  • Shahsavari, Davood;Karami, Behrouz;Janghorban, Maziar
    • Steel and Composite Structures
    • /
    • v.32 no.2
    • /
    • pp.173-187
    • /
    • 2019
  • This study is concerned with the stability of laminated composite plates modelled using Eringen's nonlocal differential model (ENDM) and a novel refined-hyperbolic-shear-deformable plate theory. The plate is assumed to be lying on the Pasternak elastic foundation and is under the influence of an in-plane magnetic field. The governing equations and boundary conditions are obtained through Hamilton's principle. An analytical approach considering Navier series is used to fine the critical bucking load. After verifying with existing results for the reduced cases, the present model is then used to study buckling of the laminated composite plate. Numerical results demonstrate clearly for the first time the roles of size effects, magnetic field, foundation parameters, moduli ratio, geometry, lay-up numbers and sequences, fiber orientations, and boundary conditions. These results could be useful for designing better composites and can further serve as benchmarks for future studies on the laminated composite plates.