• Title/Summary/Keyword: reference measurements

Search Result 848, Processing Time 0.031 seconds

Color display evaluation vs. viewing angle using $L^*a^*b^*$ color space and Fourier-optics measurements

  • Boher, Pierre;Leroux, Thierry;Bignon, Thibault;Blanc, Pierre
    • Journal of Information Display
    • /
    • v.12 no.4
    • /
    • pp.179-190
    • /
    • 2011
  • A complete analysis of the color-viewing-angle properties of different displays is presented herein using color-viewing-angle measurements made with a Fourier-optics system. The color gamut in the CIE u'v' chromatic plane was computed for all the viewing angles. The introduction of the lightness using the $L^*a^*b^*$ color space allowed a more precise analysis of the emissive properties of each display. The displays can be directly compared using a common reference. The viewing-angle dependence can be analyzed in full detail using the on-axis values as reference. The gravity center behavior and area of the color hull were computed for a more precise evaluation and comparison.

Uncertainty Analysis on Wind Speed Profile Measurements of LIDAR by Applying SODAR Measurements as a Virtual True Value (가상적 참값으로써 소다 측정자료를 적용한 라이다에 의한 풍속연직분포 측정의 불확도 분석)

  • Kim, Hyun-Goo;Choi, Ji-Hwi
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.4
    • /
    • pp.79-85
    • /
    • 2010
  • The uncertainty in WindCube LIDAR measurements, which are specific to wind profiling at less than 200m above ground levelin wind resource assessments, was analyzed focusing on the error caused by its volume sampling principle. A two-month SODAR measurement campaign conducted in an urban environment was adopted as the reference wind profile assuming that various atmospheric boundary layer shapes had been captured. The measurement error of LIDAR at a height z was defined as the difference in the wind speeds between the SODAR reference data, which was assumed to be a virtually true value, and the numerically averaged wind speed for a sampling volume height interval of $z{\pm}12.5m$. The pattern of uncertainty in the measurement was found to have a maximum in the lower part of the atmospheric boundary layer and decreased with increasing height. It was also found that the relative standard deviations of the wind speed error ratios were 6.98, 2.70 and 1.12% at the heights of 50, 100 and 150m above ground level, respectively.

A study to reduce measurement errors of an ultrasonic rangefinder (초음파 거리 센서의 계측오차 감소를 위한 연구)

  • 도용태;김태호;유석환
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.11
    • /
    • pp.43-52
    • /
    • 1997
  • Ultrasonic sensors are widely employed in detecting range to a target by the virtue of their low cost and simplicity. However, the sensor's measurements are corrupted by systematic errors due mainly to the dependency of sound speed upon surrounding conditions and random errors of uncertain origin. In this paper, we present the results of research carried out to reduce these errors for increasing the reliability of an untrasonic sensor system to be used in orbotic or other automated system's range finding. The sensor system designed herein is in a peuliar structure having a reference target and two receivers. Echoes from a small reference target placed at a known distance are used for compensating the variations of sound speed according to the changes of sensing conditions. Unlike existing ones, the technique proposed can compensate the effects of temperature or any other physical parameters without an additional sensor dedicated to the compensation. The measurements by two redundantly employed receivers are fused to reduce random errors in a statistical sense. The correlation of the signals from the receivers sharing a hardware in part is considered in the fusion process. The methodology desicribed in this paepr is conceptually simple, easy to be implemented, and effetive to increase the accuracy of the sensor measurements as experimental results confirm.

  • PDF

Evaluation of the clinical accuracy of six portable blood glucose meters in dogs

  • Shin, Min-Keun;Kim, Hakhyun;Yun, Taesik;Kang, Ji-Houn;Kang, Byeong-Teck
    • Korean Journal of Veterinary Research
    • /
    • v.60 no.3
    • /
    • pp.123-131
    • /
    • 2020
  • Portable blood glucose meters (PBGMs) are widely used because of their practicality. However, the accuracy of PBGMs has frequently been questioned. The objectives of this study were to evaluate factors that might interfere with measurements made using PBGMs, and to assess the clinical utility of 6 PBGMs. The glucose concentrations measured using the PBGMs were compared with those obtained using a reference method. The agreement between the measured values was assessed using Spearman correlation analysis, Passing-Bablok regression analysis, Bland-Altman plots, and consensus error grid analysis. Mann-Whitney and Kruskal-Wallis tests were performed to identify the parameters affecting glucose measurement. The results indicated that all of the PBGMs tested perform adequately for use in veterinary practice. In most cases, measurements made using PBGM corresponded well with the blood glucose values obtained using the reference method. Error grid analysis revealed that most of the PBGM values fell within zones A and B. However, some measurements of blood glucose concentrations < 80 mg/dL fell into zone C. PCV, and triglyceride and total protein concentration, significantly affected the output of some of the PBGMs. Therefore, clinicians should be aware of the characteristics of the PBGM that they use.

Use of preoperative cone-beam computed tomography to aid in establishment of endodontic working length: A systematic review and meta-analysis

  • Paterson, Andrew;Franco, Vittorio;Patel, Shanon;Foschi, Federico
    • Imaging Science in Dentistry
    • /
    • v.50 no.3
    • /
    • pp.183-192
    • /
    • 2020
  • Purpose: This study was performed to assess the accuracy of preoperative cone-beam computed tomography (CBCT), when justified for other reasons, in locating the apical foramen and establishing the working length. Materials and Methods: Six electronic databases were searched for studies on this subject. All studies, of any type, were included if they compared measurements of working length with preoperative CBCT to measurements using an electronic apex locator (EAL) or histological reference standard. Due to the high levels of heterogeneity, an inverse-variance random-effects model was chosen, and weighted mean differences were obtained with 95% confidence intervals and P values. Results: Nine studies were included. Compared to a histological reference standard, CBCT indicated that the apical foramen was on average 0.40 mm coronal of its histological position, with a mean absolute difference of 0.48 mm. Comparisons were also performed to an EAL reference standard, but the conclusions could not be considered robust due to high levels of heterogeneity in the results. Conclusion: A low level of evidence is produced suggesting that preoperative CBCT shows the apical foramen to be on average 0.40 mm coronal to its histological position, with a mean absolute difference of 0.48 mm.

Empirical numerical model of tornadic flow fields and load effects

  • Kim, Yong Chul;Tamura, Yukio
    • Wind and Structures
    • /
    • v.32 no.4
    • /
    • pp.371-391
    • /
    • 2021
  • Tornadoes are the most devastating meteorological natural hazards. Many empirical and theoretical numerical models of tornado vortex have been proposed, because it is difficult to carry out direct measurements of tornado velocity components. However, most of existing numerical models fail to explain the physical structure of tornado vortices. The present paper proposes a new empirical numerical model for a tornado vortex, and its load effects on a low-rise and a tall building are calculated and compared with those for existing numerical models. The velocity components of the proposed model show clear variations with radius and height, showing good agreement with the results of field measurements, wind tunnel experiments and computational fluid dynamics. Normal stresses in the columns of a low-rise building obtained from the proposed model show intermediate values when compared with those obtained from existing numerical models. Local forces on a tall building show clear variation with height and the largest local forces show similar values to most existing numerical models. Local forces increase with increasing turbulence intensity and are found to depend mainly on reference velocity Uref and moving velocity Umov. However, they collapse to one curve for the same normalized velocity Uref / Umov. The effects of reference radius and reference height are found to be small. Resultant fluctuating force of generalized forces obtained from the modified Rankine model is considered to be larger than those obtained from the proposed model. Fluctuating force increases as the integral length scale increases for the modified Rankine model, while they remain almost constant regardless of the integral length scale for the proposed model.

The Sizing Communications in Online Apparel Retail Websites - Focusing on Ready-to-Wear Women's Tailored Jacket - (온라인 의류 쇼핑 사이트의 제품 사이즈 정보 실태 분석 - 여성용 테일러드 재킷을 중심으로 -)

  • Lee, Ah Lam;Kim, Hee Eun
    • Fashion & Textile Research Journal
    • /
    • v.22 no.5
    • /
    • pp.617-627
    • /
    • 2020
  • This study investigates the apparel sizing communication presented in online retail websites focusing on women's ready-to-wear tailored jackets and to analyze the meaning of these information as the actual product size guide factor. A total of 34 retail websites were selected based on the highest growth fashion companies list and the best fashion brands list. We collected size information in two types: size specifications including sizing code, body measurements, garment measurements, and size references including customized size guide tools, size information in customer reviews, model size information, and others. Most websites prefer to present garment measurements rather than body measurements that are recommended notations under Korean standards and related regulations. In addition, there was the absence of consistency in presenting measurements list and terms that can confuse consumers in size communication. This study found that the stature measurement was a key factor in size reference despite that it did not represent a proper garment size. The obsolete Korean numbering sizing code such as '55 and '66 was still used in many ways such as idiomatic expressions for body shape. It also implied that we can take advantage of the old sizing code for accessible size information. The finding of this study gives an in-depth diagnosis of current online sizing information problems and suggests useful basic data for developing online apparel size standards and marketing strategies.

Reference points suitable for evaluation of the additional arch length required for leveling the curve of Spee

  • Cho, Yong-Hwa;Lim, Sung-Hoon;Gang, Sung-Nam
    • The korean journal of orthodontics
    • /
    • v.46 no.6
    • /
    • pp.356-363
    • /
    • 2016
  • Objective: The additional arch length required for leveling (AALL) the curve of Spee (COS) can be estimated by subtracting the two-dimensional (2D) arch circumference, which is the projection of the three-dimensional (3D) arch circumference onto the occlusal plane, from the 3D arch circumference, which represents the arch length after leveling the COS. The purpose of this study was to determine whether the cusp tips or proximal maximum convexities are more appropriate reference points for estimating the AALL. Methods: Sixteen model setups of the mandibular arch with COS depths ranging from 0 mm to 4.7 mm were constructed using digital simulation. Arch circumferences in 2D and 3D were measured from the cusp tips and proximal maximum convexities and used to calculate the AALL. The values obtained using the two reference points were compared with the paired t -test. Results: Although the 3D arch circumference should be constant regardless of the COS depth, it decreased by 3.8 mm in cusp tip measurements and by 0.4 mm in proximal maximum convexity measurements as the COS deepened to 4.7 mm. AALL values calculated using the cusp tips as reference points were significantly smaller than those calculated using the proximal maximum convexities (p = 0.002). Conclusions: The AALL is underestimated when the cusp tips are used as measurement reference points; the AALL can be measured more accurately using the proximal maximum convexities.

Use of Reference Ear Plug to improve accuracy of lateral cephalograms generated from cone-beam computed tomography scans

  • Hwang, Hyeon-Shik;Lee, Kyung-Min;Uhm, Gi-Soo;Cho, Jin-Hyoung;McNamara, James A. Jr.
    • The korean journal of orthodontics
    • /
    • v.43 no.2
    • /
    • pp.54-61
    • /
    • 2013
  • Objective: The purpose of this study was to evaluate the effectiveness of the use of Reference Ear Plug (REP) during cone-beam computed tomography (CBCT) scan for the generation of lateral cephalograms from CBCT scan data. Methods: Two CBCT scans were obtained from 33 adults. One CBCT scan was acquired using conventional methods, and the other scan was acquired with the use of REP. Virtual lateral cephalograms created from each CBCT image were traced and compared with tracings of the real cephalograms obtained from the same subject. Results: CBCT scan with REP resulted in a smaller discrepancy between real and virtual cephalograms. In comparing the real and virtual cephalograms, no measurements significantly differed from real cephalogram values in case of CBCT scan with REP, whereas many measurements significantly differed in the case of CBCT scan without REP. Conclusion: Measurements from CBCT-generated cephalograms are more similar to those from real cephalograms when REP are used during CBCT scan. Thus, the use of REP is suggested during CBCT scan to generate accurate virtual cephalograms from CBCT scan data.

STANDARIZING THE EXTRATERRESTRIAL SOLAR IRRADIANCE SPECTRUM FOR CAL/VAL OF GEOSTATIONARY OCEAN COLOR IMAGER (GOCI)

  • Shanmugam, Palanisamy;Ahn, Yu-Hwan
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.86-89
    • /
    • 2006
  • Ocean color remote sensing community currently uses the different solar irradiance spectra covering the visible and near-infrared in the calibration/validation and deriving products of ocean color instruments. These spectra derived from single and / or multiple measurements sets or models have significant discrepancies, primarily due to variation of the solar activity and uncertainties in the measurements from various instruments and their different calibration standards. Thus, it is prudent to examine model-to-model differences and select a standard reference spectrum that can be adopted in the future calibration and validation processes, particularly of the first Geostationary Ocean Color Imager (GOCI) onboard its Communication Ocean and Meterological Satellite (COMS) planned to be launched in 2008. From an exhaustive survey that reveals a variety of solar spectra in the literature, only eight spectra are considered here seeing as reference in many remote sensing applications. Several criteria are designed to define the reference spectrum: i.e., minimum spectral range of 350-1200nm, based completely or mostly on direct measurements, possible update of data and less errors. A careful analysis of these spectra reveals that the Thuillier 2004 spectrum seems to be very identical compared to other spectra, primarily because it represents very high spectral resolution and the current state of the art in solar irradiance spectra of exceptionally low uncertainty ${\sim}0.1%.$ This study also suggests use of the Gueymard 2004 spectrum as an alternative for applications of multispectral/multipurpose satellite sensors covering the terrestrial regions of interest, where it provides spectral converge beyond 2400nm of the Thuillier 2004 spectrum. Since the solar-activity induced spectral variation is about less than 0.1% and a large portion of this variability occurs particularly in the ultraviolet portion of the electromagnetic spectrum that is the region of less interest for the ocean color community, we disregard considering this variability in the analysis of solar irradiance spectra, although determine the solar constant 1366.1 $Wm^{-2}$ to be proposed for an improved approximation of the extraterrestrial solar spectrum in the visible and NIR region.

  • PDF