• Title/Summary/Keyword: reference gene

Search Result 359, Processing Time 0.026 seconds

Association of the CYP1B1 Gene Polymorphism with the Risk of Advanced Endometriosis in Korean Women (한국 여성에서 중증자궁내막증과 CYP1B1 유전자 다형성과의 관련성에 관한 연구)

  • Cho, Yeon Jean;Hur, Sung-Eun;Lee, Ji Young;Song, In Ok;Koong, Mi Kyoung;Moon, Hye Sung;Chung, Hye-Won
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.33 no.2
    • /
    • pp.85-95
    • /
    • 2006
  • Objective: To investigate whether polymorphisms of gene encoding CYP1B1 is associated with the risk of endometriosis in Korean women. Methods: We investigated 199 patients with histopathologically confirmed endometriosis rAFS stage III/IV and 183 control group women who were surgically proven to have no endometriosis. The genetic distribution of four different CYP1B1 polymorphisms at $G^{119}-T$, $G^{432}-C$, $T^{449}-C$, and $A^{453}-G$ were analyzed by polymerase chain reaction(PCR) and restriction fragment length polymorphism of PCR products. Results: We found no overall association between each individual CYP1B1 genotype and the risk of endometriosis. The odds ratio of genotype GG/GC+GG/TC+TT/AA compared to GG/CC/CC/AA(reference) was calculated as 2.06 with a 95% confidence interval of 1.003~4.216. Conclusion: This results suggest that CYP1B1 genetic polymorphism may be associated with development of endometriosis in Korean women.

Effects of lymphocyte DNA damage levels in Korean plant food groups and Korean diet regarding to glutathione S-transferase M1 and T1 polymorphisms (건강한 성인의 glutathione S-transferase M1과 T1 유전자 다형성에 따른 한식에서의 식물성 식품군과 한식의 DNA 손상 감소 효과)

  • Kim, Hyun-A;Lee, Min-Young;Kang, Myung-Hee
    • Journal of Nutrition and Health
    • /
    • v.50 no.1
    • /
    • pp.10-24
    • /
    • 2017
  • Purpose: GST (glutathione S-transferase) M1 and T1 gene polymorphisms are known to affect antioxidant levels. This study was carried out to evaluate genetic susceptibility by measuring the effect of DNA damage reduction in the Korean diet by vegetable food according to GST gene polymorphisms using the ex vivo method with human lymphocytes. Methods: Vegetable foods in the Korean diet based the results of the KNHANES V-2 (2011) were classified into 10 food groups. A total of 84 foods, which constituted more than 1% of the total intake in each food group, were finally designated as a vegetable food in the Korean diet. The Korean diet applied in this study is the standard one-week meals for Koreans (2,000 Kcal/day) suggested by the 2010 Dietary Reference Intakes for Koreans. Ex vivo DNA damage in human lymphocytes was assessed using comet assay. Results: In the Korean food group, the DNA damage protective effect of GSTM1 and GSTT1 was found to be greater in mutant type and wild-type, respectively. and the DNA damage protective effect according to the combined genotype of GSTM1 and GSTT1 was different depending on the food group. On the other hand, in Korean Diet, the DNA damage protective effect appeared to be larger in GSTM1 wild-type than in mutant type and was found to not be affected by GSTT1 genotype. Conclusion: These results can be used as basic data to demonstrate the superiority of the antioxidant function of Korean dietary patterns and food groups. Furthermore, it may be a starting point to begin research on customized antioxidant nutrition according to individual genes.

Structural Characteristics and Anti-inflammatory Activities of Chemically Sulfated-hyaluronic Acid from Streptococcus dysgalactiae (Streptococcus dysgalactiae로부터 분리된 히알루론산과 황화된 유도체의 구조와 항염증 활성)

  • Hong, Chang-Il;Jung, Eui-Gil;Han, Kook-Il;Kim, Yong Hyun;Lee, Sung Hee;Lee, Hong Sub;Han, Man-Deuk
    • Journal of Life Science
    • /
    • v.26 no.5
    • /
    • pp.545-554
    • /
    • 2016
  • Hyaluronic acid (HA) is an important macromolecule in medical and pharmaceutical fields. HA is a natural and linear polymer composed of repeating disaccharide units of β-1, 3-N-acetyl glucosamine and β-1, 4-glucuronic acid. This work aimed to confirm the structural characteristics and anti-inflammatory activities of HA and its chemically sulfated-HA. HA was produced from a fed-batch fermentation process using Streptococcus dysgalactiae in a 5 l bioreactor. HA was isolated water-soluble form (HA-WS) and water-insoluble form (HA-WI) from culture medium, and was obtained chemically sulfated-derivative (S-HA) that resulted in a 90% yield from HA-WI. The structural features of the sulfated- HA (S-HA) were investigated by FT-IR and 1H-NMR spectroscopy. The FT-IR and NMR patterns revealed the similarity in both the FTIR spectrum as well as NMR spectrum of both reference standard and purified HA from S. dysgalactiae. The anti-inflammatory activities of HA and S-HA were examined on LPS-induced RAW 264.7 cells. S-HA was significantly inhibited production of pro-inflammatory mediators such as nitric oxide (NO) and PGE2 and the gene levels of iNOS and COX-2, which are responsible for the production of NO and PGE2, respectively. Furthermore, S-HA also suppressed the overproduction of pro-inflammatory cytokine TNF-α (<80 pg/ml) and IL-6 (<100 pg/ml) compared to that of HA-WI. The present study clearly demonstrates that HA-S exhibits anti-inflammatory activities in RAW 264.7 macrophage cells.

Improved Acroparesthesia During Enzyme Replacement Therapy in a Patient Lately Diagnosed with Fabry Disease (진단이 지연된 Fabry 병 환자에서 효소대체요법을 통한 사지 말단 동통의 호전을 보인 1례)

  • Yang, Aram;Kim, Jinsup;Cho, Sung Yoon;Jin, Dong-Kyu
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.17 no.3
    • /
    • pp.92-95
    • /
    • 2017
  • Fabry disease (FD) is an X-linked lysosomal storage disorder caused by an ${\alpha}$-galactosidase A (GLA, MIM 300644) enzyme deficiency due to pathogenic variants in the ${\alpha}$-galactosidase A gene (GLA). The disease leads to accumulation of globotriaosylceramide (Gb3) and related glycophospholipids affecting nearly all major organ systems, with the primary sites damaged by Gb3 including renal glomeruli, myocardium, neurons of the dorsal ganglion and autonomic nervous system, and vascular endothelial and smooth muscle. Progressive deposition in these organ systems present with various clinical manifestations including acroparesthesia, renal failure and heart failure. Here, we report a Chinese male diagnosed with Fabry disease in his late $4^{th}$ decades showing improvement of acroparesthesia during enzyme replacement therapy (ERT). A 48-year-old Chinese man who presented with chronic recurrent severe burning pain in his fingers and toes since the age of 10, with worse involvement of the former visited to our clinic for further evaluation. His medical history included a transient ischemic attack aged 40 and diagnosed with stage 4-5 chronic kidney disease aged 47. In the family history, the patient's brother was found to be have Fabry disease 1 month before his visit. Except for his brother, all other members of the family are healthy. Based on his medical history and family history, he was strongly suspicious for Fabry disease. He was found to have a galactose-alpha-1,3-galactose level 4.96 (Reference range, 42.5-67.9) suggestive of Fabry disease. The followed sequencing of GLA coding region in our patient revealed hemizyosity for the mutation c.988C>T (Q330X) in Exon 7. Since ERT start, he showed significant improvement in his symptoms of burning sensation of fingers and toes. On the contrary, due to deteriorating kidney function even with ERT, he is considered for kidney transplantation. Despite of diagnostic delay until late 4th decades, ERT showed a potential improvement of acroparesthesia in our patient. However, late start of ERT can lead to poor outcome in multiorgan function. Therefore, early diagnosis with high index of suspicion followed by continuous ERT with regular monitoring have an impact on quality of life in Fabry disease.

  • PDF

Mutation Patterns of gyrA, gyrB, parC and parE Genes Related to Fluoroquinolone Resistance in Ureaplasma Species Isolated from Urogenital Specimens (비뇨생식기계 검체로부터 분리된 Ureaplasma 종의 Fluoroquinolone 내성과 관련된 gyrA, gyrB, parC, parE 유전자의 돌연변이 양상)

  • Cho, Eun-Jung;Hwang, Yu Yean;Koo, Bon-Kyeong;Park, Jesoep;Kim, Young Kwon;Kim, Sunghyun
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.48 no.2
    • /
    • pp.74-81
    • /
    • 2016
  • Ureaplasma species can normally colonize in the bodies of healthy individuals. Their colonization is associated with various diseases including non-gonococcal urethritis, chorioamnionitis, neonatal meningitis, and prematurity. In 2012, the sum of the resistant and intermediate resistant rates of Ureaplasma spp. to ofloxacin and ciprofloxacin was 66.08% and 92.69%, respectively. DNA point mutations in the genes encoding DNA gyrase (topoisomerase II) and topoisomerase IV are commonly responsible for fluoroquinolone resistance. Each enzyme is composed of two subunits encoded by gyrA and gyrB genes for DNA gyrase and parC and parE genes for topoisomerase IV. In the current study, these genes were sequenced in order to determine the role of amino acid substitutions in Ureaplasma spp. clinical isolates. From December 2012 to May 2013, we examined mutation patterns of the quinolone resistance-determining region (QRDR) in Ureaplasma spp. DNA sequences in the QRDR region of Ureaplasma clinical isolates were compared with those of reference strains including U. urealyticum serovar 8 (ATCC 27618) and U. parvum serovar 3 (ATCC 27815). Mutations were detected in all ofloxacin- and ciprofloxacin-resistant isolates, however no mutations were detected in drug-susceptible isolates. Most of the mutations related to fluoroquinolone resistance occurred in the parC gene, causing amino acid substitutions. Newly found amino acid substitutions in this study were Asn481Ser in GyrB; Phe149Leu, Asp150Met, Asp151Ile, and Ser152Val in ParC; and Pro446Ser and Arg448Lys in ParE. Continuous monitoring and accumulation of mutation data in fluoroquinolone-resistant Ureaplasma clinical isolates are essential to determining the tendency and to understanding the mechanisms underlying antimicrobial resistance.

Microbial Diversity in the Enrichment Cultures from the Fermented Beverage of Plant Extract Using Ribosomal RNA Sequence Analysis (라이보좀 RNA 염기서열 분석을 이용한 집식배양된 식물추출물발효음료의 미생물 다양성)

  • Lee, Choung Kyu;Kim, Baolo;Kang, Young Min;Lee, Hee Yul;Hwang, Chung Eun;Ahn, Min Ju;Seo, Weon Taek;Cho, Kye Man
    • Korean Journal of Microbiology
    • /
    • v.50 no.4
    • /
    • pp.351-359
    • /
    • 2014
  • A beverage was produced by the fermentation of mixed extracts from the various fruits, vegetables, algae, and medical herbs. The physicochemical properties of the fermented beverage of plant extracts (FBPE) and microbial diversity were analyzed in cultures enriched from FBPE using 16S and 26S rRNA gene sequence analyses. The pH, acidity, $^{\circ}brix$, reducing sugar, and alcohol contents of the FBPE were determined to be the 3.48, 1.68%, 70.0, 1,026 g/L, and 3.5%, respectively. The most abundant free sugar and organic acid in the FBPE were glucose (567.83 g/L) and tartaric acid (93.68 mg/L), respectively. Lactobacillus homohiochii was the predominant species in all enriched culture samples: 100% of the species in 0B (0% sugar) and 40B (40% sugar) libraries and 95.6% of 20B library (20% sugar). Lactobacillus fructivorans was detected in the 20B library. The predominant species in the samples of enrichment cultures collected from FBPE with three different sugar concentrations were: Candida zeylanoides (45.2%) in the 0Y library (0% sugar), Candida lactis-condensi (35.7%) and C. zeylanoides (35.7%) in the 20Y library (20% sugar), and C. lactis-condensi (38.1%) in the 40Y library (40% sugar). This result may provide a useful frame of reference for further analyses of microbial population dynamics in FBPE.

Construction of Genetic Linkage Map and Identification of Quantitative Trait Loci in Populus davidiana using Genotyping-by-sequencing (Genotyping-by-sequencing 기법을 이용한 사시나무(Populus davidiana) 유전연관지도 작성 및 양적형질 유전자좌 탐색)

  • Suvi Kim;Yang-gil Kim;Dayoung Lee;Hye-jin Lee;Kyu-Suk Kang
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.1
    • /
    • pp.40-56
    • /
    • 2023
  • Tree species within the Populus genus grow rapidly and have an excellent capacity to absorb carbon, conferring substantial ability to effective purify the environment. Poplar breeding can be achieved rapidly and efficiently if a genetic linkage map is constructed and quantitative trait loci (QTLs) are identified. Here, a high-density genetic linkage map was constructed for the control pollinated progeny using the genotyping-by-sequencing (GBS) technique, which is a next-generation sequencing method. A search was also performed for the genes associated with quantitative traits located in the genetic linkage map by examining the variables of height and diameter at root collar, and resilience to insect damage. The height and diameter at root collar were measured directly, while the ability to recover from insect damage was scored in a 4-year-old breeding population of aspen hybrids (Odae19 × Bonghyeon4 F1) established in the research forest of Seoul National University. After DNA extraction, paternity was confirmed using five microsatellite markers, and only the individuals for which paternity was confirmed were used for the analysis. The DNA was cut using restriction enzymes and the obtained DNA fragments were prepared using a GBS library and sequenced. The analyzed results were sorted using Populus trichocarpa as a reference genome. Overall, 58,040 aligned single-nucleotide polymorphism (SNP) markers were identified, 17,755 of which were used for mapping genetic linkages. The genetic linkage map was divided into 19 linkage groups, with a total length of 2,129.54 cM. The analysis failed to identify any growth-related QTLs, but a gene assumed to be related to recovery from insect damage was identified on linkage group (chromosome) 4 through genome-wide association study.

Identification of a Locus Associated with Resistance to Phytophthora sojae in the Soybean Elite Line 'CheonAl' (콩 우수 계통 '천알'에서 발견한 역병 저항성 유전자좌)

  • Hee Jin You;Eun Ji Kang;In Jeong Kang;Ji-Min Kim;Sung-Taeg Kang;Sungwoo Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.3
    • /
    • pp.134-146
    • /
    • 2023
  • Phytophthora root rot (PRR) is a major soybean disease caused by an oomycete, Phytophthora sojae. PRR can be severe in poorly drained fields or wet soils. The disease management primarily relies on resistance genes called Rps (resistance to P. sojae). This study aimed to identify resistance loci associated with resistance to P. sojae isolate 40468 in Daepung × CheonAl recombinant inbred line (RIL) population. CheonAl is resistant to the isolate, while Daepung is generally susceptible. We genotyped the parents and RIL population via high-throughput single nucleotide polymorphism genotyping and constructed a set of genetic maps. The presence or absence of resistance to P. sojae was evaluated via hypocotyl inoculation technique, and phenotypic distribution fit to a ratio of 1:1 (R:S) (χ2 = 0.57, p = 0.75), indicating single gene mediated inheritance. Single-marker association and the linkage analysis identified a highly significant genomic region of 55.9~56.4 megabase pairs on chromosome 18 that explained ~98% of phenotypic variance. Many previous studies have reported several Rps genes in this region, and also it contains nine genes that are annotated to code leucine-rich repeat or serine/threonine kinase within the approximate 500 kilobase pairs interval based on the reference genome database. CheonAl is the first domestic soybean genotype characterized for resistance against P. sojae isolate 40468. Therefore, CheonAl could be a valuable genetic source for breeding resistance to P. sojae.

The Trend and Achievements of Forest Genetics Research in Abroad (선진국(先進國)에 있어서의 임목육종연구(林木育種硏究)의 동향(動向))

  • Hyun, Sin Kyu
    • Journal of Korean Society of Forest Science
    • /
    • v.14 no.1
    • /
    • pp.1-20
    • /
    • 1972
  • The trend and achievements of forest genetics research in abroad were investigated through observation tours and reference work and following facts were found to be important aspects which should be adopted in the forest genetics research program in Korea. Because of world wide recognization on the urgency of taking a measure to reserve some areas of the representative forest type on the globe before the extingtion of such forest type as the results of continuous exploitations of the natural forests to meet the timber demand all over the world, it is urgently needed to take a measure to reserve certain areas of natural stand of Pinus koraiensis, Pinus parviflora, Pinus densiflora f. erectra, Abies koreana, Quercus sp., Populus sp., etc. as gene pool to be used for the future program of forest tree improvement. And the genetic studies of those natural forest of economic tree species are also to be performed. 1. Increase of the number of selected tree for breeding purpose. Because of the fact that the number of plus tree at present is too small to carry out selection program for tree improvement, particularly for the formation of source population for recurrent selection of parent trees of the 2nd generation seed orchard it is to be strongly emphasized to increase the number of plus tree by alleviating selection criteria in order to enlarge the population size of plus trees to make the selection program more efficient. 2. Progeny testing More stress should be placed on carrying out progeny testing of selected trees with open pollinated seeds. And particular efforts are to be made for conducting studies on adult/juvenile correlation of important traits with a view to enable to predict adult performances with some traits revealed in juvenile age thus to save time for progeny testing. 3. Genotype-environment interaction Studies on genotype and environment interaction should be conducted in order to elucidate whether the plus trees selected on the good site express their superiority on the poor site or not and how the environment affect the genotype. And the justification of present classification of seed distribution area should be examined. 4. Seed orchard of broad leaf tree species. Due to the difficulty of accurate comparison of growth rate of neighbouring trees of broad leaf tree species in natural stand, it is recommended that for the improvement of broad leaf trees a seedling seed orchard is to be made by roguing the progeny test plantation planted densely with control pollinated seedlings of selected trees. 5. Breeding for insect resistant varieties. In the light of the fact that the resistant characteristics against insect such as pine gall midge (Thiecodiplosis japonensis U. et I.) and pine bark beetle (Myelophilus pinipera L.) are highly correlated with the amount and quality of resin which are known as gene controlled characteristics, breeding for insect resistance should be carried out. 6. Breeding for timber properties. With the tree species for pulp wood in particular, emphasis should be placed upon breeding for high specific gravity of timber. 7. Introduction of Cryptomeria and Japanese Cypress In the light of the fact that the major clones of Cryptomeria are originated from Yoshino source and are being planted up to considerably north and high elevation in Japan, those species should be examined on their cold resistance in Korea by planting them in further northern part of the country.

  • PDF