• Title/Summary/Keyword: reference for selection

Search Result 524, Processing Time 0.023 seconds

Bayesian Model Selection in Analysis of Reciprocals

  • Kang, Sang-Gil;Kim, Dal-Ho;Cha, Young-Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.1167-1176
    • /
    • 2005
  • Tweedie (1957a) proposed a method for the analysis of residuals from an inverse Gaussian population paralleling the analysis of variance in normal theory. He called it the analysis of reciprocals. In this paper, we propose a Bayesian model selection procedure based on the fractional Bayes factor for the analysis of reciprocals. Using the proposed model selection procedures, we compare with the classical tests.

  • PDF

A Fuzzy TOPSIS Approach Based on Trapezoidal Numbers to Material Selection Problem

  • Celik, Erkan;Gul, Muhammet;Gumus, Alev Taskin;Guneri, Ali Fuat
    • Journal of Information Technology Applications and Management
    • /
    • v.19 no.3
    • /
    • pp.19-30
    • /
    • 2012
  • Material selection is a complex problem in the design and development of products for diverse engineering applications. This paper is aimed to present a fuzzy decision making approach to deal with the material selection in engineering design problems. A fuzzy multi criteria decision-making model is proposed for solving the material selection problem. The proposed model makes use of fuzzy TOPSIS (Technique for Order reference by Similarity to Ideal Solution) with trapezoidal numbers for evaluating the criteria and ranking the alternatives. And result is compared with fuzzy VIKOR (VlseKriterijumska Optimizacija I Kompromisno Resenje in Serbian, means Multi criteria Optimisation and Compromise Solution) which is proposed by Jeya Girubha and Vinodh [2012]. The present paper is aimed to also improve literature of fuzzy decision making for material selection problem.

Wavelength selection by loading vector analysis in determining total protein in human serum using near-infrared spectroscopy and Partial Least Squares Regression

  • Kim, Yoen-Joo;Yoon, Gil-Won
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.4102-4102
    • /
    • 2001
  • In multivariate analysis, absorbance spectrum is measured over a band of wavelengths. One does not often pay attention to the size of this wavelength band. However, it is desirable that spectrum is measured at only necessary wavelengths as long as the acceptable accuracy of prediction can be met. In this paper, the method of selecting an optimal band of wavelengths based on the loading vector analysis was proposed and applied for determining total protein in human serum using near-infrared transmission spectroscopy and PLSR. Loading vectors in the full spectrum PLSR were used as reference in selecting wavelengths, but only the first loading vector was used since it explains the spectrum best. Absorbance spectra of sera from 97 outpatients were measured at 1530∼1850 nm with an interval of 2 nm. Total protein concentrations of sera were ranged from 5.1 to 7.7 g/㎗. Spectra were measured by Cary 5E spectrophotometer (Varian, Australia). Serum in the 5 mm-pathlength cuvette was put in the sample beam and air in the reference beam. Full spectrum PLSR was applied to determine total protein from sera. Next, the wavelength region of 1672∼1754 nm was selected based on the first loading vector analysis. Standard Error of Cross Validation (SECV) of full spectrum (1530∼l850 nm) PLSR and selected wavelength PLSR (1672∼1754 nm) was respectively 0.28 and 0.27 g/㎗. The prediction accuracy between the two bands was equal. Wavelength selection based on loading vector in PLSR seemed to be simple and robust in comparison to other methods based on correlation plot, regression vector and genetic algorithm. As a reference of wavelength selection for PLSR, the loading vector has the advantage over the correlation plot since the former is based on multivariate model whereas the latter, on univariate model. Wavelength selection by the first loading vector analysis requires shorter computation time than that by genetic algorithm and needs not smoothing.

  • PDF

Fast Mode Decision in H.264/AVC Using Adaptive Selection of Reference Frame and Selective Intra Mode (다중 참조 영상의 적응적 선택 및 선택적 인트라 모드를 이용한 H.264/AVC의 고속 모드 결정 방법)

  • Lee Woong-Ho;Lee Jung-Ho;Cho Ik-Hwan;Jeong Dong-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3C
    • /
    • pp.271-278
    • /
    • 2006
  • Rate-constrained coding is one of the many coding-efficiency oriented tools of H.264/AVC, but mode decision process of RDO(Rate distortion optimization) requires high computational complexity. Many fast mode decision algorithms have been proposed to reduce the computational complexity of mode decision. In this paper, we propose two algorithms for reduction of mode decision in H.264/AVC, which are the fast reference frame selection and selective intra prediction mode decision. Fast reference frame selection is efficient for inter predication and selective intra prediction mode decision can effectively reduce excessive calculation load of intra prediction mode decision. The simulation results showed that the proposed methods could reduce the encoding time of the overall sequences by 44.63% on average without any noticeable degradation of the coding efficiency.

Genomic Tools and Their Implications for Vegetable Breeding

  • Phan, Ngan Thi;Sim, Sung-Chur
    • Horticultural Science & Technology
    • /
    • v.35 no.2
    • /
    • pp.149-164
    • /
    • 2017
  • Next generation sequencing (NGS) technologies have led to the rapid accumulation of genome sequences through whole-genome sequencing and re-sequencing of crop species. Genomic resources provide the opportunity for a new revolution in plant breeding by facilitating the dissection of complex traits. Among vegetable crops, reference genomes have been sequenced and assembled for several species in the Solanaceae and Cucurbitaceae families, including tomato, pepper, cucumber, watermelon, and melon. These reference genomes have been leveraged for re-sequencing of diverse germplasm collections to explore genome-wide sequence variations, especially single nucleotide polymorphisms (SNPs). The use of genome-wide SNPs and high-throughput genotyping methods has led to the development of new strategies for dissecting complex quantitative traits, such as genome-wide association study (GWAS). In addition, the use of multi-parent populations, including nested association mapping (NAM) and multiparent advanced generation intercross (MAGIC) populations, has helped increase the accuracy of quantitative trait loci (QTL) detection. Consequently, a number of QTL have been discovered for agronomically important traits, such as disease resistance and fruit traits, with high mapping resolution. The molecular markers for these QTL represent a useful resource for enhancing selection efficiency via marker-assisted selection (MAS) in vegetable breeding programs. In this review, we discuss current genomic resources and marker-trait association analysis to facilitate genome-assisted breeding in vegetable species in the Solanaceae and Cucurbitaceae families.

Mode Selection Chain Code for Coding of Line Drawing Images (선도형의 부호화를 위한 모드설정 체인코드)

  • 장기철;최연성;최종수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.13 no.1
    • /
    • pp.41-53
    • /
    • 1988
  • Line drawing images are the most proper information to represent the characteristics and shapes of digital images and used for recognition and communication. For the coding of line drawing images, common eight-direction chain code is used mostly. In the paper, the new mode selection chain code method is proposed which can compress the eight-direction chain code about twenty percents and be used for the reversible coding method of line drawing images. In this coding techniques, we set a reference mode for each quadrant around an abject pixel, and assign 3-directional code for these reference modes. Therefore a line pixel is coded with 3 bits. Also, a new corner finding method of line drawing images using this mode selection chain code is proposed in this paper.

  • PDF

Selection of mAs with Using Table Strap in Computed Tomography Scan (전산화단층촬영 시 환자 고정 밴드를 이용한 선량의 선택)

  • Lee, Young-Hyen;An, Hyeong-Theck
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.13 no.2
    • /
    • pp.63-69
    • /
    • 2011
  • Table strapis patient fixture for securing the patient movements and falls. if it designed to measure the abdominal circumference and used as an indicator of dose selection at CT scan. it will prevent the overexposure of dose without degradation of image quality and efficiently manage dose of each type of body to technician to deal with CT. First, in order to compare the dose used in CT image and qualitative characteristics. reference image is obtained by examining the abdominal phantom in same conditions with the hospital 120 kVp, 200 mAs, D-Dom (Dynamic Dose Of Modulation). SNR, PSNR, RMSE, MAE, CTDIvol of CT images are compared with reference image. for comparing with reference image, the image that Umbilicus level image of Abdomen CT is stored in the PACS were used. For comparison, the top 12 o'clock portion of the air drawn from the same ROI was measured. CTDIvol, mAs, etc. In order to analyze the characteristics of the image, by measuring the length of the umbilicus circumference, pattern of the dose was analyzed. by using the analyzed perimeter and dose information, To be identified visually, fixed band that scale marked were produced. Use them, If the length of circumference of less than 60 cm 100 mAs, Case of 61~80 cm 120 mAs, Case of 80~100 cm 150 mAs, more than 100 cm 200 mAs, dose selection based on the perimeter, the image was applied. by compare analyzed with the Reference Image, image quality was assessed. by compare with existing tests that equally 200 mAs applied, How much was confirmed that the dose reduction. 1. Depending on the Abdominal circumference, the average PSNR(dB) of the image that differently dose applied was 45.794. 2. Comparing with existing test. the dose of scan that adjusted the mAs depending on the circumference was decreased about 40%. SNR and PSNR of the image that obtained by adjusting the standard mAs based on dose modulation were not much different. Therefore, By choosing a low mAs. dose reduction can be obtained. and the dose selection method that measured Abdominal circumference using a fixed band can protect the overexposure and uniformly apply dose of each type of body to technician to deal with CT.

  • PDF

Quantization Parameter Selection Method For H.264-based Multi-view Video Coding (H.264 기반 다시점 비디오 부호화를 위한 양자화 계수 결정 방법)

  • Park, Pil-Kyu;Ho, Yo-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.6C
    • /
    • pp.579-584
    • /
    • 2007
  • Recently various prediction structures have been proposed to exploit inter-view correlation among multi-view video sequences. In this paper, we propose a QP(quantization parameter) selection method for the B frame inserted in the first frames of each GOP(group of pictures), where we change QP for the B frame adaptively to achieve uniform picture quality and overall coding gain. Each B frame is coded with reference to two frames in its adjacent views. We calculate QP for the B frame based on the correlation between the two reference frames, calculated using their rate-distortion costs. By applying the proposed method to the MVC reference prediction structure, we have improved the coding gain by 0.09$\sim$0.16 dB.

Efficient Fast Multiple Reference Frame Selection Technique for H.264/AVC (H.264/AVC에서의 효율적인 고속 다중 참조 프레임 선택 기법)

  • Lee, Hyun-Woo;Ryu, Jong-Min;Jeong, Je-Chang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.10C
    • /
    • pp.820-828
    • /
    • 2008
  • In order to achieve high coding efficiency, H.264/AVC video coding standard adopts the techniques such as variable block size coding, motion estimation with quarter-pel precision, multiple reference frames, rate-distortion optimization, and etc. However, these coding methods have a defect to greatly increase the complexity for motion estimation. Particularly, from multiple reference frame motion estimation, the computational burden increases in proportion to the number of the searched reference frames. Therefore, we propose the method to reduce the complexity by controlling the number of the searched reference frames in motion estimation. Proposed algorithm uses the optimal reference frame information in both $P16{\times}16$ mode and the adjacent blocks, thus omits unnecessary searching process in the rest of inter modes. Experimental results show the proposed method can save an average of 57.31% of the coding time with negligible quality and bit-rate difference. This method also can be adopted with any of the existing motion estimation algorithm. Therefore, additional performance improvement can be obtained.

Analysis of the Combined Positioning Accuracy using GPS and GLONASS Navigation Satellites

  • Choi, Byung-Kyu;Roh, Kyoung-Min;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.2 no.2
    • /
    • pp.131-137
    • /
    • 2013
  • In this study, positioning results that combined the code observation information of GPS and GLONASS navigation satellites were analyzed. Especially, the distribution of GLONASS satellites observed in Korea and the combined GPS/GLONASS positioning results were presented. The GNSS data received at two reference stations (GRAS in Europe and KOHG in Goheung, Korea) during a day were processed, and the mean value and root mean square (RMS) value of the position error were calculated. The analysis results indicated that the combined GPS/GLONASS positioning did not show significantly improved performance compared to the GPS-only positioning. This could be due to the inter-system hardware bias for GPS/GLONASS receivers, the selection of transformation parameters between reference coordinate systems, the selection of a confidence level for error analysis, or the number of visible satellites at a specific time.