• Title/Summary/Keyword: reference air line

Search Result 36, Processing Time 0.029 seconds

A Numerical Study on the Improvement of the Performance of a Vehicle Paint Drying Process (자동차 도장 건조 공정의 건조 성능 향상을 위한 수치해석 연구)

  • Choi, Jongrak;Hur, Nahmkeon;Kim, Dongchoul;Kim, Hee-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.12
    • /
    • pp.867-874
    • /
    • 2012
  • In the present study, three-dimensional transient numerical simulations were carried out to improve the performance of a vehicle paint drying process. In order to describe the movement of a vehicle, the techniques of moving boundary condition and multiple reference flames (MRF) were used. For the validation of the numerical analysis, the predicted temperature on the surface of a vehicle was compared to the experimental data, and a good agreement was achieved. With validated numerical procedure, various operating conditions of the temperature and the flow rate of the supply air were investigated to improve the drying performance of the facility. It is shown that the optimization of the operating condition can lead to energy savings and faster line speed of the production.

A Case Study on MIL-STD-1760E based Test Bench Implementation for Aircraft-Weapon Interface Testing (항공기-무장간의 연동 시험을 위한 MIL-STD-1760E 기반 테스트 벤치 구축 사례 연구)

  • Kim, Tae-bok;Park, Ki-seok;Kim, Ji-hoon;Jung, Jae-won;Kwon, Byung-gi
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.2
    • /
    • pp.57-63
    • /
    • 2018
  • In the case of aircraft-launched guided weapons, various interface tests such as MIL-STD-1760 based power source, discrete signal, MUX communication as well as BIT of missile can verify system safety and reliability. The purpose of this case study is to develop a test bench based on MIL-STD-1760E for interoperability testing between aircraft and weapons. We proposed a testing method of the launch sequence based on the defined TIME LINE in the development phase of the missile system from the application of the power of the missile to the targeting, the transfer order, and the missile separation process. Furthermore, it will be a reference model that can maximize the verification scope in the development phase of the air to surface missile system by simulating abnormal situation to the inert missile using the error insertion function.

AC-DC Converter Control for Power Factor Correction of Inverter Air Conditioner System (인버터 에어컨 시스템의 역률보상을 위한 AC-DC 컨버터 제어)

  • Park, Gwi-Geun;Choi, Jae-Weon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.2
    • /
    • pp.154-162
    • /
    • 2007
  • In this paper, we propose a new AC-DC converter control method to comply with harmonics regulation(IEC 61000-3) effective for the inverter system of an air conditioner whose power consumption is less than 2,500W. There are many different ways of AC-DC converter control, but this paper focuses on the converter control method that is adopting an input reactor with low cost silicon steel core to strengthen cost competitiveness of the manufacturer. The proposed control method controls input current every half cycle of the line frequency to get unit power factor and at the same time to reduce switching loss of devices and acoustic noise from reactor. This kind of converter is known as a Partial Switching Converter(PSC). In this study, theoretical analysis of the PSC has been performed using Matlab/Simulink while a 16-bit micro-processor based converter has been used to perform the experimental analysis. In the theoretical analysis, electrical circuit models and equations of the PSC are derived and simulated. In the experiments, micro-processor controls input current to keep the power factor above 0.95 by reducing the phase difference between input voltage and current and at the same time to maintain a reference DC-link voltage against voltage drop which depends on DC-link load. Therefore it becomes possible to comply with harmonic regulations while the power factor is maximized by optimizing the time of current flow through the input reactor for every half cycle of line frequency.

Detection Method Analysis for Train Correct Position Stop in Manual Operation for PSD System (수동운전 방식에서의 PSD시스템을 위한 정위치정차 판독방법 분석)

  • Lee, Moo-Ho;Yang, Gi-Hee;Park, Jung-Soun
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1678-1684
    • /
    • 2007
  • Platform Screen Door(PSD) has been installed in train manual operation section(ATS/ATC) by SeoulMetro since 2005. PSDs are now operating at 17 stations in SeoulMetro lines. As a result, it increases the safety of passenger, makes a comfortable platform and saves the energy of air conditioning. For PSD operation, train shall stop within 600mm of the train stop reference point. In train manual operation section, the detection system of train position is required to notify the train driver of train position and to ensure the condition that train stops the correct position for PSD operation. To detect the train stop position, the optical sensor shall be installed at platform. However, in case of SeoulMetro lines, the detection criterions of the train correct position stop are different because of using various types of trains which have different size and shape of front cars. In this paper, to solve this problem, the precise detection algorithm of the train stop at the correct position is used, and Laser distance measure sensor is introduced to notify the distance form the reference point of the train correct stop to train driver. This system has been applying to Seoul Metro line total.

  • PDF

Characteristics of PM10, PM2.5 and CO2 Concentration in Public Transportations and Development of Control Technology (대중교통수단에서 PM10, PM2.5 및 CO2의 농도 현황과 저감기술 개발에 관한 연구)

  • Park, Duck Shin;Kwon, Soon Bark;Cho, Young Min;Jang, Seong Ki;Jeon, Jae Sik;Park, Eun Young
    • Particle and aerosol research
    • /
    • v.6 no.1
    • /
    • pp.9-20
    • /
    • 2010
  • This study examined the concentration level of the major air pollutants in public transportation. The study was conducted between February 2009 and March 2008 at Suwon-Yeosu line in Korea. $PM_{10}$ concentration level was $100{\mu}g/m^3$ on average. The $PM_{2.5}$ to PM10 ratio in transport is 0.37, which was lower than the results published by other researches. The result also demonstrated that outdoor $PM_{10}$ concentration was about 56~60% level compared to that of the cabin. $CO_2$ concentration level in the cabin was 1,359ppm, which does not exceed 2,000ppm, which is the guideline concentration level according to the Ministry of Environment. $CO_2$ concentration level in the cabin was $CO_2=23.4{\times}N+460.2$, and about 23.4ppm in $CO_2$ concentration level increased every time one passenger was added on. The experiment conducted on the train demonstrated that the average $PM_{10}$ concentration level was $100{\mu}g/m^3$ in case of the reference cabin while average $PM_{10}$ concentration level of the modified vehicle was $68{\mu}g/m^3$. Likewise, effect of the particle reduction device for the reduction of $PM_{10}$ concentration level was approximately 21%. Meanwhile there was almost no difference in the concentration level between reference and modified cabin in case of $PM_{2.5}$. Using zeolite as an adsorbent was made to reduce the $CO_2$ concentration level in the cabin. Number of passengers was factored in, to calculate the effect of the adsorption device, which demonstrated that about 36% of $CO_2$ concentration level was reduced in the modified cabin effect of the $CO_2$ reduction device. This research analyzed the current status concerning the quality of air in the public transportation and technologies were developed that reduces major air pollutants.

Development of Coating Robot Automation System Based on OLP for Radiators in PPS (페키지형 발전시스템용 라디에이터의 OLP 기반 코팅로봇 자동화시스템 개발)

  • Kim, Seon-Jin;Lee, Jong-Hwan;Lho, Tae-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.585-591
    • /
    • 2013
  • A robot automation system for coating uniformly a big radiator used in PPS(Packaged Power Station), which consists of 6-axis robot with spray gun, travelling vehicle, supply device of coating paint and thinner with pressured air, HMI controller and robot path OLP(Off-Line Programming), was developed. Experimental results on an optimum operation condition show that a coating thickness is $43{\mu}m$, which is satisfied to a design reference of $25-100{\mu}m$. A productivity of the developed coating robot automation system based on OLP is about 12.6 times of that of manual operation.

Non-Resonant Waveguide Technique for Measurement of Microwave Complex Permittivity of Ferroelectrics and Related Materials

  • Jeong, Moongi;Kim, Beomjin;Poplavko, Yuriy;Kazmirenko Victor;Prokopenko Yuriy;Baik, Sunggi
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.7 s.278
    • /
    • pp.449-454
    • /
    • 2005
  • A waveguide method is developed to study the materials with relatively large dielectric constants at microwave range. Basically, the method is similar to the previous waveguide methods represented by short-circuit line and transmission/reflection measurement methods. However, the complex permittivity is not determined by the shift in resonance frequencies, but by numerical analysis of measured scattering parameters. In order to enhance microwave penetration into the specimen with relatively large permittivity, a dielectric plate with lower permittivity is employed for impedance matching. The influences of air gap between the specimen and waveguide wall are evaluated, and the corresponding errors are estimated. The propagation of higher order modes is also considered. Experimental results for several reference ceramics are presented.

Fluid dynamical characteristics of microencapsulated phase change material slurries (미립잠열슬러리의 유체역학적 특성연구)

  • 이효진;이승우;이재구
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.4
    • /
    • pp.549-559
    • /
    • 1999
  • An experimental study was peformed to measure the viscosity of microencapsulated PCM slurries as the functions of its concentration and temperature, and also influence to its fluid dynamics. For the viscosity measurement, a rotary type viscometer, which was equipped with temperature control system, was adopted. The slurry was mixed with water and Sodium Lauryl Sulphate as a surfactant by which its suspended particles were dispersed well without the segregation of particles during the experiment. The viscosity was increased as the concentration of MicroPCM particle added. The surfactant increased 5% of the viscosity over the working fluid without particles. Experiments were proceeded by changing parameters such as PCM particles'concentration as well as the temperature of working fluid. As a result, a model to the functions of temperature for the working fluid and its particle concentration is proposed. The proposed model, for which its standard deviation shows 0.8068, is agreed well with the reference's data. The pressure drop was measured by U-tube manometer, and then the friction factor was obtained. It was noted that the pressure drop was not influenced by the state of PCM phase, that is solid or liquid in its core materials at their same concentration. On the other hand, it was described that the pressure drop of the slurry was much increased over the working fluid without particles. A friction factor was placed on a straight line in all working fluids of the laminar flow regardless of existing particles as we expected.

  • PDF

Development of an Educational System and Real Time Nonlinear Control (II) (교육용 시스템 개발과 실시간 비선형 제어(II))

  • 박성욱
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.12
    • /
    • pp.571-576
    • /
    • 2002
  • This paper is to develop jumping ring system with three sensor arrays and to control levitated ring using dynamic neural mode. Placing an aluminum ring on the core and switching on an AC source causes the ring to jump in the air due to induced currents. The educational system is composed of 40th optical sensor array, encode circuit, 89C51 microprocessor and control board. The control board consists of power IC, and phase controller. Real time process is present to obtain a height of levitated ring for three different sensor arrays. Based on the educational system and the proposed dynamic neural mode, the height of levitation of the ring is controlled by reference signals. This paper focuses on real system controls using the dynamic neural mode with on line learning algorithm.

Analysis on System Effects of SUS Tube in Optical Fiber Composite Power Cable Systems Using EMTP (EMTP를 이용한 광 복합 지중송전케이블 광 유니트 금속관의 시스템 영향분석)

  • Jung, Chae-Kyun;Jang, Tai-In;Kang, Ji-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1180-1185
    • /
    • 2014
  • This paper describes the effects on SUS tube of power optical fiber composite cable on underground transmission lines. The effects on grounding, air gap between SUS tube and metal sheath, contact resistance between outer semi-conducting layer and metal sheath and grounding of SUS tube application or not are variously analysed using EMTP in normal operating condition as well as single line to ground fault. From these results, in this paper, the scheme for protecting the electrically abnormal phenomena will be established on power-optical fiber composite cable of underground transmission lines. This paper can contribute to specification of grounding reference of SUS tube of optical fiber composite power cable system.