• Title/Summary/Keyword: ree vibration

Search Result 22, Processing Time 0.039 seconds

Formation of Hydroxyl Radical from the Hydrogen Chemisorbed Silicon Surface by Incident Oxygen Atoms

  • Ree, Jong-Baik;Chang, Kyung-Soon;Kim, Yoo-Hang;Shin, Hyung-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.7
    • /
    • pp.986-992
    • /
    • 2003
  • We have calculated the probability of the OH formation and energy deposit of the reaction exothermicity in the newly formed OH, particularly in its vibrational motion, in the gas-surface reaction O(g) + H(ad)/Si → OH(g) + Si on the basis of the collision-induced Eley-Rideal mechanism. The reaction probability of the OH formation increases linearly with initial excitation of the HSi vibration. The translational and vibrational motions share most of the energy when the H-Si vibration is initially in the ground state. But, when the initial excitation increases, the vibrational energy of OH rises accordingly, while the energies shared by other motions vary only slightly. The product vibrational excitation is significant and the population distribution is inverted. Flow of energy between the reaction zone and the solid has been incorporated in trajectory calculations. The amount of energy propagated into the solid is only a few percent of the available energy released in the OH formation.

The Vibration Test Result of MIRIS

  • Jeong, Woong-Seob;Moon, Bong-Kon;Cha, Sang-Mok;Park, Young-Sik;Lee, Dae-Hee;Ree, Chang-Hee;Nam, Uk-Won;Lee, Mi-Hyeon;Park, Sung-Joon;Ka, Nung-Hyun;Lee, Duk-Hang;Park, Jang-Hyun;Matsumoto, Toshio;Han, Won-Yong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.34 no.2
    • /
    • pp.64.2-64.2
    • /
    • 2009
  • PDF

Analysis of Force Characteristic in Switched Reluctance Motor According to Electric (전기적인 파라메터 변화에 따른 스위치드 릴럭턴스 전동기의 힘특성 해석)

  • Chun, Yon-Do;Ree, Cheol-Jick;Lee, Taeck-Kie;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.122-124
    • /
    • 2001
  • In this paper, the influence of electrical parameters such as the turn-on and turn-off angle on the torque and force characteristics is investigated for the reduction of the torque ripple which is main source of vibration and noise in switched reluctance motor (SRM). The four different types of the turn-on angle are set to the section of rising inductance profile respectively. The optimum turn-on angle is proposed for the acquisition of the flat current shape minimizing the torque ripple. 2D finite element method (FEM) considering the iron saturation and the actual switching circuit of the SRM drive is applied for the dynamic analysis. The simulation results of phase current and torque are also compared to the experimental results.

  • PDF

Collision-induced Energy Transfer and Bond Dissociation in Toluene by H2/D2

  • Ree, Jongbaik;Kim, Yoo Hang;Shin, Hyung Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3641-3648
    • /
    • 2013
  • Energy transfer and bond dissociation of $C-H_{methyl}$ and $C-H_{ring}$ in excited toluene in the collision with $H_2$ and $D_2$ have been studied by use of classical trajectory procedures at 300 K. Energy lost by the vibrationally excited toluene to the ground-state $H_2/D_2$ is not large, but the amount increases with increasing vibrational excitation from 5000 and $40,000cm^{-1}$. The principal energy transfer pathway is vibration to translation (V-T) in both systems. The vibration to vibration (V-V) step is important in toluene + $D_2$, but plays a minor role in toluene + $H_2$. When the incident molecule is also vibrationally excited, toluene loses energy to $D_2$, whereas it gains energy from $H_2$ instead. The overall extent of energy loss is greater in toluene + $D_2$ than that in toluene + $H_2$. The different efficiency of the energy transfer pathways in two collisions is mainly due to the near-resonant condition between $D_2$ and C-H vibrations. Collision-induced dissociation of $C-H_{methyl}$ and $C-H_{ring}$ bonds occurs when highly excited toluene ($55,000-70,400cm^{-1}$) interacts with the ground-state $H_2/D_2$. Dissociation probabilities are low ($10^{-5}{\sim}10^{-2}$) but increase exponentially with rising vibrational excitation. Intramolecular energy flow between the excited C-H bonds occurring on a subpicosecond timescale is responsible for the bond dissociation.

HBr Formation from the Reaction between Gas-phase Bromine Atom and Vibrationally Excited Chemisorbed Hydrogen Atoms on a Si(001)-(2 X1) Surface

  • Ree, J.;Yoon, S.H.;Park, K.G.;Kim, Y.H.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.8
    • /
    • pp.1217-1224
    • /
    • 2004
  • We have calculated the probability of HBr formation and energy disposal of the reaction exothermicity in HBr produced from the reaction of gas-phase bromine with highly covered chemisorbed hydrogen atoms on a Si (001)-(2 ${\times}$1) surface. The reaction probability is about 0.20 at gas temperature 1500 K and surface temperature 300 K. Raising the initial vibrational state of the adsorbate(H)-surface(Si) bond from the ground to v = 1, 2 and 3 states causes the vibrational, translational and rotational energies of the product HBr to increase equally. However, the vibrational and translational motions of product HBr share most of the reaction energy. Vibrational population of the HBr molecules produced from the ground state adsorbate-surface bond ($v_{HSi}$ =0) follows the Boltzmann distribution, but it deviates seriously from the Boltzmann distribution when the initial vibrational energy of the adsorbate-surface bond increases. When the vibration of the adsorbate-surface bond is in the ground state, the amount of energy dissipated into the surface is negative, while it becomes positive as vHSi increases. The energy distributions among the various modes weakly depends on surface temperature in the range of 0-600 K, regardless of the initial vibrational state of H(ad)-Si(s) bond.

Recent Progress of MIRIS Development

  • Han, Won-Yong;Lee, Dae-Hee;Park, Young-Sik;Nam, Uk-Won;Jeong, Woong-Seob;Ree, Chang-Hee;Moon, Bong-Kon;Park, Sung-Joon;Cha, Sang-Mok;Lee, Duk-Hang;Park, Jang-Hyun;;Seon, Kwang-Il;Yang, Sun-Choel;Park, Jong-Oh;Rhee, Seung-Wu;Lee, Hyung-Mok;Matsumoto, Toshio
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.23.4-23.4
    • /
    • 2011
  • MIRIS is the main payload of the Science and Technology Satellite-3 (STSAT-3). which is being developed by KASI for infrared survey observation of the Galactic plane at Paschen alpha wavelength. Wideband filters in I and H band will also be used to observe cosmic infrared background. The MIRIS will perform astronomical observations in the near-infrared wavelengths of 0.9~2 ${\mu}m$ using a 256 ${\times}$ 256 Teledyne PICNIC FPA sensor providing a 3.67 ${\times}$ 3.67 degree field of view with a pixel scale of 51.6 arcsec. The flight model of the MIRIS has been recently developed, The system performance tests have been made in the laboratory, including opto-mechanics test, vibration test, thermal vacuum test and passive cooling test down to 200K, using a thermally controlled vacuum chamber. Several focus tests showed good agreements compared to initial design parameters. Recent efforts are being concentrated to improve the system performances, particularly to reduce readout noise level in electronics. After assembly and integration into the satellite bus, the MIRIS will be launched in 2012.

  • PDF

Trajectory Studies of Methyl Radical Reaction with Iodine Molecule

  • Lee, Sang-Kwon;Ree, Jong-Baik;Kim, Yoo-Hang;Shin, Hyung-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.9
    • /
    • pp.1369-1380
    • /
    • 2005
  • The reaction of methyl radical with iodine molecule on an attractive potential energy surface is studied by classical trajectory procedures. The reaction occurs over a wide range of impact parameters with the majority of reactive events occurring in the backward rebound region on a subpicosecond scale. A small fraction of reactive events take place in the forward hemisphere on a longer time scale. The ensemble average of reaction times is 0.36 ps. The occurrence of reactive events is strongly favored when the incident radical and the target molecule align in the neighborhood of collinear geometry. Since the rotational velocity of I2 is slow, the preferential occurrence of reactive events at the collinear configuration of $CH_3{\ldots}I{\ldots}$I leads to the reaction exhibiting an anisotropic dependence on the orientation of $I_2$. During the collision, there is a rapid flow of energy from the $H_3C{\ldots}$I interaction to the I-I bond. The $CH_3I$ translation and $H_3C$-I vibration share nearly all the energy released in the reaction, and the distribution of the vibrational energy is statistical. The reaction probability is $\cong$0.4 at the $CH_3$ and I2 temperatures maintained at 1000 K and 300 K, respectively. The probability is weakly dependent on the $CH_3\;and\;I_2$ temperatures between 300 K and 1500 K.

Discussion of Critical Design Review (CDR) for MIRIS, the Main Payload of STSAT-3

  • Han, Won-Yong;Lee, Dae-Hee;Nam, Uk-Won;Park, Young-Sik;Jeong, Woong-Seob;Ree, Chang-Hee;Moon, Bong-Kon;Park, Sung-Joon;Cha, Sang-Mok;Park, Jang-Hyun;Lee, Duk-Hang;Ka, Nung-Hyun;Lee, Mi-Hyun;Seon, Kwang-Il;Yuk, In-Soo;Yang, Sun-Choel;Park, Jog-Oh;Rhee, Seung-Wuh;Lee, Hyung-Mok;Matsumoto, Toshio
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.44.3-44.3
    • /
    • 2009
  • The MIRIS (Multi-purpose IR Imaging System), as the main payload of Science and Technology Satellite-3 (STSAT-3), is being developed by KASI in collaboration with several institutes for wide-field space observation in near IR wavelength. The Engineering Qualification Model (EQM) of MIRIS has been designed and fabricated in the laboratory. The system performance tests have been made including opto-mechanics, vibration test, thermal-vacuum environmental test and passive cooling test down to 200K. Most of the performance test results were satisfied with system requirements. The results of MIRIS performance tests have been presented at Critical Design Review (CDR) on September 2009. Several revisions were also recommended for Flight Model (FM) design, and detailed plan to develop FM of MIRIS is discussed in this paper.

  • PDF

Development of the Infrared Space Telescope, MIRIS

  • Han, Won-Yong;Lee, Dae-Hee;Park, Young-Sik;Jeong, Woong-Seob;Ree, Chang-Hee;Nam, Uk-Won;Moon, Bon-Kon;Park, Sung-Joon;Cha, Sang-Mok;Pyo, Jeong-Hyun;Park, Jang-Hyun;Ka, Nung-Hyun;Seon, Kwang-Il;Lee, Duk-Hang;Rhee, Seung-Woo;Park, Jong-Oh;Lee, Hyung-Mok;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.64.1-64.1
    • /
    • 2011
  • MIRIS (Multipurpose Infra-Red Imaging System), is a small infrared space telescope which is being developed by KASI, as the main payload of Science and Technology Satellite 3 (STSAT-3). Two wideband filters (I and H) of the MIRIS enables us to study the cosmic infrared background by detecting the absolute background brightness. The narrow band filter for Paschen ${\alpha}$ emission line observation will be employed to survey the Galactic plane for the study of warm ionized medium and interstellar turbulence. The opto-mechanical design of the MIRIS is optimized to operate around 200K for the telescope, and the cryogenic temperature around 90K for the sensor in the orbit, by using passive and active cooling technique, respectively. The engineering and qualification model of the MIRIS has been fabricated and successfully passed various environmental tests, including thermal, vacuum, vibration and shock tests. The flight model was also assembled and is in the process of system optimization to be launched in 2012 by a Russian rocket. The mission operation scenario and the data reduction software is now being developed. After the successful mission of FIMS (the main payload of STSAT-1), MIRIS is the second Korean space telescope, and will be an important step towards the future of Korean space astronomy.

  • PDF

Peliminary Performance Test for MIRIS, the Main Payload of STSAT-3

  • Han, Won-Yong;Lee, Dae-Hee;Park, Young-Sik;Nam, Uk-Won;Jeong, Woong-Seob;Ree, Chang-Hee;Moon, Bong-Kon;Park, Sung-Joon;Cha, Sang-Mok;Lee, Duk-Hang;Park, Jang-Hyun;Ka, Nung-Hyun;Seon, Kwang-Il;Yang, Sun-Choel;Park, Jong-Oh;Rhee, Seung-Wu;Lee, Hyung-Mok;Matsumoto, Toshio
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.37.4-37.4
    • /
    • 2010
  • KASI is developing the MIRIS (Multi-purpose IR Imaging System), as the main payload of Science and Technology Satellite-3 (STSAT-3). The Engineering Qualification Model (EQM) of the MIRIS has been recently fabricated, and Flight Model (FM) is now in final development stage. The system performance tests have been made mainly with EQM, and partly with FM in the laboratory, including opto-mechanics test, vibration test, thermal-vacuum test and passive cooling test down to 200K, using a thermal controlled vacuum chamber. Most of the system performance test results of the MIRIS are satisfied with the required specifications and its results were reflected in development of the FM with several revisions of the system design. In this paper, we present detailed system performance test procedures of the MIRIS and its results.

  • PDF