• 제목/요약/키워드: redundant sensors

검색결과 50건 처리시간 0.034초

Unscented Kalman Filter For Aircraft Sensor Fault Detection

  • Kim, In-Jung;Kim, You-Dan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2335-2339
    • /
    • 2003
  • To prevent the critical situation due to the fault in the aircraft sensor system, the fault tolerant system with triple or quadruple redundancy can be made. However, if the faults are occurred in two or more than sensors simultaneously, the conventional fault detection process, such as cross-channel monitoring, may give the wrong fault alarm. For this case, we can detect the fault by estimating the state vector based on the system dynamics model, which is nonlinear for aircraft. In this paper, we propose the unscented Kalman filter to estimate the nonlinear state vector. This filter utilizes the so-called unscented transformation of sigma points featured the statistical characteristics of the random variable. For verification, we perform the simulations for F-16 aircraft with accelerometers, gyros, GPS and air data system.

  • PDF

이동로보트의 자율주행 (Autonomous navigation of a mobile robot)

  • 주영훈;이석주;차상엽;장화선;김성권;김광배;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.94-99
    • /
    • 1993
  • In this paper, the method for navigation and obstacle avoidance of an autonomous mobile robot is proposed. It is based on the fuzzy inference system which enables to deal with imprecise and uncertain information, and on the neural network which enables to learn input and output pattern data obtained from ultrasonic sensors. For autonomous navigation, the wall-following navigation utilizing input and output data by an expert's control action is constructed. An approach by the neural network is developed for the obstacle avoidance because of the redundant input data. For an autonomous navigation, the fuzzy control and the control of the neural network are integrated and its feasibility is demonstrated by means of experiment.

  • PDF

이동 로봇을 위한 온라인 센서 교정 방법 (On-line sensor calibration for mobile robot)

  • 김성도;유원필;정명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.527-530
    • /
    • 1996
  • The Kalman filter has been used as a self-localization method for the mobile robot. To satisfy the assumptions inherent in the Kalman filter, we should calibrate the sensors of the robot before use of them. However, it is generally hard to find exact sensor parameters, and the parameters may change during the robot task as the environment varies. Thus we need to perform on-line sensor calibration, by which we can obtain more credible location of the mobile robot. In this paper, we present an on-line sensor calibration scheme which estimates the unknown sensor bias and the current position of the robot. To this end, first we find out the calibration errors of the sensor from redundant sensory data using the parity vector and recursive minimum variance estimation. Then we calculate the current position of the robot by weighted least square estimation without internal encoder data. The performance of the proposed method is evaluated through computer simulation.

  • PDF

Future trends in multisensor integration and fusion

  • Luo, Ren-C.;Kay, Michael-G.;Lee, W.Gary
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.22-28
    • /
    • 1992
  • The need for intelligent systems that can operate in an unstructured, dynamic environment has created a growing demand for the use of multiple, distributed sensors. While most research in multisensor fusion has revolved around applications in object recognition-including military applications for automatic target recognition-developments in microsensor technology are encouraging more research in affordable, highly-redundant sensor networks. Three trends that are described at length are the increasing use of microsensors, the techniques that are used in the handling of partial or uncertain data, and the application of neural network techniques for sensor fusion.

  • PDF

센서네트워크 활용을 위한 경량 병렬 BCH 디코더 설계 (Design of Lightweight Parallel BCH Decoder for Sensor Network)

  • 최원정;이제훈
    • 센서학회지
    • /
    • 제24권3호
    • /
    • pp.188-193
    • /
    • 2015
  • This paper presents a new byte-wise BCH (4122, 4096, 2) decoder, which treats byte-wise parallel operations so as to enhance its throughput. In particular, we evaluate the parallel processing technique for the most time-consuming components such as syndrome generator and Chien search owing to the iterative operations. Even though a syndrome generator is based on the conventional LFSR architecture, it allows eight consecutive bit inputs in parallel and it treats them in a cycle. Thus, it can reduce the number of cycles that are needed. In addition, a Chien search eliminates the redundant operations to reduce the hardware complexity. The proposed BCH decoder is implemented with VHDL and it is verified using a Xilinx FPGA. From the simulation results, the proposed BCH decoder can enhance the throughput as 43% and it can reduce the hardware complexity as 67% compared to its counterpart employing parallel processing architecture.

제약 전파 기법을 적용한 다중 이동 로봇의 상호 협동 위치 추정 (Cooperative Localization for Multiple Mobile Robots using Constraints Propagation Techniques on Intervals)

  • 조경환;장철수;이지홍
    • 제어로봇시스템학회논문지
    • /
    • 제14권3호
    • /
    • pp.273-283
    • /
    • 2008
  • This article describes a cooperative localization technique of multiple robots sharing position information of each robot. In case of conventional methods such as EKF, they need to linearization process. Consequently, they are not able to guarantee that their result is range containing true value. In this paper, we propose a method to merge the data of redundant sensors based on constraints propagation techniques on intervals. The proposed method has a merit guaranteeing true value. Especially, we apply the constraints propagation technique fusing wheel encoders, a gyro, and an inexpensive GPS receiver. In addition, we utilize the correlation between GPS data in common workspace to improve localization performance for multiple robots. Simulation results show that proposed method improve considerably localization performance of multiple robots.

차량 주행안정성 제어시스템의 자동안전 로직 (Failsafe Logic for a vehicle Stability Control System)

  • 민경찬;이건복;이경수
    • 대한기계학회논문집A
    • /
    • 제28권11호
    • /
    • pp.1685-1691
    • /
    • 2004
  • This paper describes the fault detection and failsafe logic to be used in an Electronic Stability Program(ESP). The aim of this paper is to prevent of erroneous controls in the ESP. Developed this paper introduces the fault detection logic and evaluation of residual signals. The failsafe logic consists of four redundant sub-models, which can be used for detecting the faults in various sensors (yaw rate, lateral acceleration, steering wheel angle). We present two mathematical residual generation methods : one is a method using the average value and the other is a method using the minimum value of the each residual. We verified a failsafe logic developed using vehicle test results also we compare vehicle model based simulation results with test vehicle results.

Efficient Resource Allocation for Energy Saving with Reinforcement Learning in Industrial IoT Network

  • Dongyeong Seo;Kwansoo Jung;Sangdae Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권9호
    • /
    • pp.169-177
    • /
    • 2024
  • IWSN(Industrial Wireless Sensor Network)는 센서, 로봇, 기계 등의 산업 장비들을 무선으로 연결하여 공정 모니터링 및 제어를 통한 산업 자동화 실현을 가능하게 하는 산업 IoT의 핵심 기술로써 실시간, 신뢰성, 에너지 효율 등 현대 산업환경의 엄격한 요구사항을 지원해야 한다. 이를 위해 IWSN에서는 다중 라우팅 경로 설정, 고정적 중복자원 할당 및 비경쟁 기반 스케줄링 등 신뢰적 통신 방식이 사용된다. 그러나 활용되지 않는 무선 자원의 낭비는 한정된 무선 자원의 효율뿐만 아니라 에너지 효율을 저하한다. 본 논문에서는 통신 스케줄링 시 강화학습을 활용하여 사용되지 않는 할당된 무선 자원을 파악하고, 이를 반영한 자원 재할당을 통해 전체 산업 네트워크의 에너지 소모를 절약하는 방안을 제안한다. 실험을 통한 성능평가 결과, 제안 방안은 높은 전송 신뢰성을 유지하면서도 기존 방법에 비해 약 30% 향상된 스케줄링 자원 효율을 보였다. 또한, 불필요한 통신을 줄임으로써 에너지 효율 및 전송지연이 각각 21%, 38% 이상 개선됨을 확인하였다.

Hierarchical Clustering Approach of Multisensor Data Fusion: Application of SAR and SPOT-7 Data on Korean Peninsula

  • Lee, Sang-Hoon;Hong, Hyun-Gi
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.65-65
    • /
    • 2002
  • In remote sensing, images are acquired over the same area by sensors of different spectral ranges (from the visible to the microwave) and/or with different number, position, and width of spectral bands. These images are generally partially redundant, as they represent the same scene, and partially complementary. For many applications of image classification, the information provided by a single sensor is often incomplete or imprecise resulting in misclassification. Fusion with redundant data can draw more consistent inferences for the interpretation of the scene, and can then improve classification accuracy. The common approach to the classification of multisensor data as a data fusion scheme at pixel level is to concatenate the data into one vector as if they were measurements from a single sensor. The multiband data acquired by a single multispectral sensor or by two or more different sensors are not completely independent, and a certain degree of informative overlap may exist between the observation spaces of the different bands. This dependence may make the data less informative and should be properly modeled in the analysis so that its effect can be eliminated. For modeling and eliminating the effect of such dependence, this study employs a strategy using self and conditional information variation measures. The self information variation reflects the self certainty of the individual bands, while the conditional information variation reflects the degree of dependence of the different bands. One data set might be very less reliable than others in the analysis and even exacerbate the classification results. The unreliable data set should be excluded in the analysis. To account for this, the self information variation is utilized to measure the degrees of reliability. The team of positively dependent bands can gather more information jointly than the team of independent ones. But, when bands are negatively dependent, the combined analysis of these bands may give worse information. Using the conditional information variation measure, the multiband data are split into two or more subsets according the dependence between the bands. Each subsets are classified separately, and a data fusion scheme at decision level is applied to integrate the individual classification results. In this study. a two-level algorithm using hierarchical clustering procedure is used for unsupervised image classification. Hierarchical clustering algorithm is based on similarity measures between all pairs of candidates being considered for merging. In the first level, the image is partitioned as any number of regions which are sets of spatially contiguous pixels so that no union of adjacent regions is statistically uniform. The regions resulted from the low level are clustered into a parsimonious number of groups according to their statistical characteristics. The algorithm has been applied to satellite multispectral data and airbone SAR data.

  • PDF

Design of Fault Diagnostic and Fault Tolerant System for Induction Motors with Redundant Controller Area Network

  • 홍원표;윤충섭;김동화
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2004년도 학술대회 논문집
    • /
    • pp.371-374
    • /
    • 2004
  • Induction motors are a critical component of many industrial processes and are frequently integrated in commercially available equipment. Safety, reliability, efficiency, and performance are some of the major concerns of induction motor applications. Preventive maintenance of induction motors has been a topic great interest to industry because of their wide range application of industry. Since the use of mechanical sensors, such as vibration probes, strain gauges, and accelerometers is often impractical, the motor current signature analysis (MACA) techniques have gained murk popularity as diagnostic tool. Fault tolerant control (FTC) strives to make the system stable and retain acceptable performance under the system faults. All present FTC method can be classified into two groups. The first group is based on fault detection and diagnostics (FDD). The second group is independent of FDD and includes methods such as integrity control, reliable stabilization and simultaneous stabilization. This paper presents the fundamental FDD-based FTC methods, which are capable of on-line detection and diagnose of the induction motors. Therefore, our group has developed the embedded distributed fault tolerant and fault diagnosis system for industrial motor. This paper presents its architecture. These mechanisms are based on two 32-bit DSPs and each TMS320F2407 DSP module is checking stator current, voltage, temperatures, vibration and speed of the motor. The DSPs share information from each sensor or DSP through DPRAM with hardware implemented semaphore. And it communicates the motor status through field bus (CAN, RS485). From the designed system, we get primitive sensors data for the case of normal condition and two abnormal conditions of 3 phase induction motor control system is implemented. This paper is the first step to drive multi-motors with serial communication which can satisfy the real time operation using CAN protocol.

  • PDF