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Abstract

The need for intelligent systems that can operate in an
unstructured, dynamic environment has created a growing
demand for the use of multiple, distributed sensors. While
most research in multisensor fusion has revolved around
applications in object recognition—including military ap-
plications for automatic target recognition—developments
in microsensor technology are encouraging more research
in affordable, highly-redundant sensor networks. Three
trends that are described at length are the increasing use of
microsensors, the techniques that are used in the handling
of partial or uncertain data, and the application of neural
network techniques for sensor fusion.

1. INTRODUCTION

The use of multiple sensors to gather information about
an unstructured, time-varying environment presents various
problems, and there may be many options available for
gach particular situation. The potential advantages in
integrating and/or fusing information from multiple sensors
are that the information can be obtained more accurately,
concerning features that are impossible to perceive with
individual sensors, in less time, and at a lesser cost. These
advantages correspond, respectively, to the notions of the
redundancy, complementarity, timeliness, and cost of the
information provided to the machine or system. Many of
the possible problems associated with creating a general
methodology for multisensor integration and fusion, as well
as developing the actual systems that use multiple sensors,
center on the methods used for modeling the error or
uncertainty in the integration and fusion process, the sen-
sory information, and the operation of the overall system
including the sensors. For the potential advantages in
integrating multiple sensors to be realized, solutions to
these problems have to be found that are both practical and
theoretically sound.
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A detailed description of many of the current issues in-
volved in integrating and fusing the information from mul-
tiple sensors is provided in Luo and Kay [12] [11], while
the trend towards the development of microsensors may
lead to additional issues related to, for example, the need
for more effective methods to abstract information from the
sensor data when a large number of sensors are used. These
microsensors may allow sensory systems to be modeled
upon biological systems that incorporate large networks of
highly redundant sensors.

While there are many approaches to multisensor fusion
and integration, there are some basic operations that are
common to most implementations. The diagram in Fig. 1
illustrates these basic operations. In the diagram, the family
of n sensors provide the raw sensory data to create the ab-
stract sensor models. The sensor models are required in or-
der to supply some measure of the uncertainty or error that
always accompanies actual sensor data to the remainder of
the system. If low-level fusion of the sensor data is re-
quired, the data must be processed for sensor registration
to make sure that all sensors that are involved in supplying
the data are referring to the same location in the
environment and at the same moment in time. If the in-
formation provided by a particular sensor is significantly
different from other sensors in the system, a separate op-
eration, which would be specific to the particular system,
may be the path by which the information is integrated with
the remaining sensors. The guiding or cueing refers to the
process whereby a sensor uses information furnished by
another sensor as input to determine the area or object that
is to be observed. A common example would be a robot
manipulator controller that uses video input in order to
determine the location of a surface or object that will then

be examined with tactile sensors.
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Fig. 1 -. Functional diagram of multisensor integration and
fusion in the operation of a system. (from Luo and Kay,
1992; fig. 4).

The world model is where information about the envi-
ronment is stored. Although it may be initiated with a pri-
ori information about the environment, this is likely to be a
dynamic component which is continuously updated as the
system continues to gain more information about the sur-
roundings. Higher level processes can use the information
supplied by the world model to make the assessment for
which the system is designed. For example, in object
recognition systems, the world model might contain infor-
mation regarding the classification of an object that has
been observed or it may contain the result that the system
was unable to classify the object.

Research in multisensor integration and fusion will most
likely continue to focus on adaptive systems which are able
to more closely model the natural world, and models which
allow the highly parallel collection and processing of
sensor data. In the search for effective models of intelligent
systems, hybrid systems that accommodate the most useful
characteristics of knowledge-based systems, along with
neural networks and techniques which incorporate uncer-
tainty reasoning, appear to have the most promise for future
useful results. They also offer the greatest challenge in es-
tablishing a mathematically rigorous foundation for the fu-
sion process. The following sections will discuss the roles
of microsensors, neural networks, and uncertainty calculus
in the continuing evolution of multisensor fusion and inte-

gration.

1.1. Multisensor Fusion in Automatic Target
Recognition

For over a decade, research in multisensor systems has
focused primarily on applications related to automatic ob-
ject recognition (AOR)—a more specific category of which

23

is automatic target recognition (ATR) for military
applications. AOR systems must be robust with respect to
problems in occlusion, scaling, and the viewing angle of the
object being scrutinized. ATR systems face these problems
and they must also assume that they are dealing with adver-
sarial objects that will use every means available in order to
camouflage their presence. Often there are many targets
present and there may be some friendly objects mixed in
among the adversaries. In these battlefield situations, it is
critical to gather as much information as can be processed
within a crucial time-frame, and with a high degree of con-
fidence. The time-frame within which the value of ATR
data perishes is a factor that has contributed to the delay in
the development of effective ATRs until the advent of
faster computers and parallel processing.

Even with faster computers and parallel processing, re-
searchers are still faced with problems that are not easily
solved. Uncertainty in the physical sensors themselves, and
the uncertainty due to changes in target signature because
of fluctuations in the state of the natural environment have
created problems whose solutions are often beyond the
scope of statistical pattern recognition methods. To over-
come these problems, researchers have turned to artificial
intelligence techniques, neural networks, and evidential
logic techniques such as fuzzy membership functions and
Dempster-Shafer uncertainty reasoning.

Uncertainty due to a lack of data concerning target sil-
houettes and target features is also a problem and it can be
reduced by increasing the number and types of sensors that
are used to gather the data. This need for more data from
multiple angles of view has created a need for the evolution
of ATR systems from single-level architectures of similar
or disparate sensors to distributed clusters of sensors, where
each cluster may then be connected to a local processing el-
ement. These distributed clusters of sensors are the basic
components of distributed sensor networks and they have a
greater capacity to resolve the uncertainty that is common
to platforms that contain multiple sensors at a single loca-
tion. Figure 2 demonstrates the use of distributed multisen-
sor platforms in a battlefield scenario.

The predilection for ATR applications is the reason that
most research in multisensor integration and fusion has re-
volved around the use of military-type sensors such as
MMW radar, LADAR, and FLIR [11]. While the theory
and applications for multisensor fusion were being devel-
oped in ATR systems, progress was also being made in
parallel systems architecture and algorithms, and in the
miniaturization of electronic components. The 1970s and
1980s brought many improvements in micromachining
techniques. This in turn helped make the manufacturing of
microactuators (such as microvalves and resonant mi-

crostructures) and microsensors economically feasible {21].



Fig. 2 - A network of distributed multisensor platforms.

1.2 Highly Redundant Sensors and Multisensor Fusion

The miniaturization of electronic components is cur-
rently making it possible to use multiple milli-scale sensors
in consumer electronics. The same principles of system ar-
chitecture, sensor fusion, and decision-making that have
been developed for ATR systems can be applied to these
consumer products. This convergence of developments in
parallel-system architectures and in the manufacture of mi-
crosensors, coupled with the demand for improvements in
intelligent systems for consumer products as well as for
manufacturing, presents a strong motivation for continued
research in multisensor integration and fusion for machine
intelligence and automated manufacturing.

Advances in the manufacture of silicon chips which are
able to integrate sensing devices and signal-processing
electronics have opened the world to the development of
microsensors on a scale approaching three orders of magni-
tude smaller than the diameter of a human hair [13]. A
combination of microsensors and multisensor fusion will
make possible a new range of applications. Continuing de-
velopments in microsensor technology demonstrate that it
may soon be practical to consider using very dense popula-
tions of highly redundant sensors, in much the same way
that they appear in biological systems.

The human olfactory sensors cover an area of about five
square centimeters and have on the order of 106 chemore-
ceptors; the tongue has over 10 000 taste receptors; in the
inner ear, the organ of corti has 20 000 hair cells that vi-
brate in response to sound [6]. Clearly, nature has adapted
to a need for highly redundant sensory data. In the same
way that biological systems are looked to for inspiration
when modeling intelligent systems, evidence is easily
found in nature for the benefits of using sensor redundancy.
Martin Brooks [3] demonstrates the function of redundant
sensors in biological systems that use lateral inhibition to
resolve closely spaced applications of pressure on the skin,
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and he relates this action to competitive learning in self-or-

ganizing neural networks.

2. MICROSENSORS IN MULTISENSOR
INTEGRATION AND FUSION

Future trends in multisensor fusion and integration must
invariably include systems designed to incorporate the use
of microsensors. Microsensors are sensors that are created
on silicon chips using the process known as “micromachin-
ing,” which is similar to the photolithographic process used
in IC manufacturing. The main difference between the two
processes is that micromachining is a deep-etching process
which gives the microstructures of the sensor more of a
three-dimensional quality than is found in ICs.

An example of a micro-sensor is shown in Figure 3. The
microsensor shown in the figure is a “multichannel multi-
plexed recording array for studies of information
processing in neural structures” ({21}, fig. 6). Ken Wise
developed this smart microsensor which has a multichannel
micromachined recording array. The microsensor probe
was designed to function as a neuro-electronic interface for
the study of signal processing techniques in biological
neural nets and for applications in neural prostheses. It
incorporates on-chip amplifiers which provide a per-
channel gain of 300 and bandlimit the recorded signals to
10 Hz to 10 KHz, and require no off-chip components. A
three-lead interface connects it to the external world.

OUTPUT LEADS

SIGNAL PROCESSING
CIRCUIT

INTERCONNECTING
LEADS

SUPPORTING
SUBSTRATE

EXPOSED RECORDING SITES

Fig. 3-. An example of a microsensor (fig. 6 in Wise,
1991b).

2.1 Advantages of microsensors

The advantages that microsensors have to offer over con-
ventional sensors are due to their smaller size and to the po-
tential for developing families of “smart” sensors. The ad-
vantages due to size include the following: the ability to use
them in spaces that are too small for the use of conventional
sensors; increased durability due to an enhanced resistance

to damage from impact; and a better signal-to-noise ratio.



Smart sensors are sensors that have signal-processing
electronics and sensing elements on the same chip. This im-
proves the signal-to-noise ratio by preventing the attenua-
tion of the signal due to connectors and cables that can be
affected by electromagnetic interference. Also, since micro-
machining can be performed as a batch process, manufac-
turers will have the opportunity to recover development
costs in much the same as they have with ICs. Thus, mi-
crosensors will tend to be less costly than conventional sen-
sors and therefore more accessible for experimental re-

search in multisensor integration and fusion.

2.2 Problems with microsensors

One of the major obstacles faced by smart microsensors
is the lack of selectivity when exposing the sensors to se-
vere environments. Unlike an IC, whose packaging is de-
signed to protect the circuitry from the elements, a sensor
must be exposed to what could be a severe environment if it
is to supply the correct information. This can adversely af-
fect the electronic signal processing components on smart
sensors. Packaging sensors so that the electronics are pro-
tected while the sensor is exposed is a problem that must be
addressed individually for each application. The microsen-
sor and its packaging must be designed simultaneously
[16].

The integration of sensors and processing elements on
the same chip creates a need for simpler fusion schemes.
Using a local processing element prohibits extensive access
to large data bases that are available to conventional sen-
sors. This is the same type of communication bandwidth
problem that is encountered in ATR when, for example,
groups of radar stations must contend for limited interpro-
cessor communication links.

2.3 Applications of microsensors

Multisensor arrays are currently used in automotive
monitoring and control systems, biomedical applications,
instrumentation, and in many consumer products such as
microwaves, dishwashers, cameras, and washing machines.
These are but a few of the possibilities for microsensor
applications.

Speculative applications for the near future include the
use of multiple microsensors in robot manipulators and in
environmental monitors. Their utilization in robot manipu-
lators will allow the employment of robots in areas that cur-
rently require a high degree of dexterity, and the ability to
work in tight spaces.

Autonomous microminiature robots, such as those found
in the Artificial Intelligence Laboratory at MIT [4], might
someday be used to deploy multisensor platforms to form
untethered and highly mobile distributed sensor networks.
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They could be used as a way to inexpensively gather infor-
mation in such applications as the environmental monitor-
ing of contaminated reactor vessels, the development of
miniature landrovers for planetary exploration, and for the
non-destructive inspection of small enclosures such as
pipes.

Biomedical applications of microsensors can be broadly
divided into two categories: diagnostic applications and
monitoring applications [19].

Diagnostic applications: Microsensor arrays are used to
perform broad diagnostics such as screening for a variety
of drugs simultaneously and performing the “cardiology
panel” for cholesterol, triglyceride, sodium, and potas-
sium. Catheter-based sonic imaging sensors are used by
radiologists and vascular surgeons to examine the inter-
nal surfaces of blood vessels.

Monitoring applications: Multiple microsensors are used
for on-line monitoring of patients’ blood in operating
rooms and intensive care units, and as a way to check for
the presence of important blood electrolytes.
Optoelectronic sensors have been used to measure vibra-
tional amplitudes of the middle ear to a resolution of
0.005 microns [23]. Sensor arrays have been implanted
in the respiratory tract of exercising patients and have
shown a substantial difference between the temperature
profiles of normal subjects and asthmatic patients [5].
The monitoring of multiple variables is implicit in most
biomedical applications, making this a rich field for the
exploration of multisensor fusion applications with mi-
Crosensors.

3. NEURAL NETWORKS IN MULTISENSOR
FUSION

Intelligent systems must have the capability to gather
data, assimilate the data into abstract information, and for-
mulate some decision based on that information. Fusion
processing centers that are used in multisensor systems may
need to perform these operations at one or more levels.
System qualities that are necessary to ensure that these op-
erations can be performed effectively include: that the
system be adaptive—that is, have the potential for learning;
that it be robust so that failure of some system components
is expected and can occur without causing an abrupt degra-
dation in overall system performance; and that it have the
ability to handle uncertainty in sensory data.

3.1 Types of neural networks
There are many different types of neural network mod-
els. They are distinguishable by their network topology,



node characteristics, and the learning rules under which
they adapt. Two broad categories of neural network models
that are often used for pattern classification applications
and multisensor fusion are the supervised-learning type and
the unsupervised-learning type. Specific models include:
multi-layer perceptrons and Hopfield associative memories
in the supervised-learning category; and Kohonen self-or-
ganizing feature maps in the unsupervised category.

In supervised learning, the system trainer must have a
priori knowledge about the classification of the information
in the training set. Patterns, whose classification is known
by the trainer, are entered into the network along with their
proper class label. The network then uses its appropriate
training algorithm to correctly classify the training data.
Once trained, the network will be able to classify new in-
coming data with varying degrees of success. One of the
networks—the associative memory—has been successfully
adapted for use in a fuzzy classifier [9],[17]. While these
supervised-training models have found heavy use in the de-
velopment of intelligent systems, they are hampered by
some inherent problems.

Multi-layer Perceptron: The multi-layer perceptron uses
a back-propagation learning algorithm that is computation-
ally intensive and, when learning a large number of pattern
classes, must often be trained off-line rather than in real
time. It also lacks plasticity, in that, after having learned
group classifications, if the modeler wishes the system to
be trained for a new group classification, the system must
repeat the learning process. The training time increases as
the number of classifications increases. The system may be-
come unstable so that training is never achieved.

Hopfield Associative Memory: The Hopfield associative
memory is based on the Kohonen content addressable
memory model. Hopfield [8] has demonstrated that the as-
sociative memory will always reach a stable state but that
the number of classes that are separable in memory is di-
rectly proportional to the maximum number of nodes that
are present in any of the network’s layers.

In unsupervised learning, a neural network that is often
used is the Kohonen self-organizing feature map. With this
model, the output class of the input feature vector is not
known ahead of time. Input vectors are presented to the
network and the network will cluster the feature vectors.
The clusters will be centered on the point that approximates
the probability density function of the input vectors.
Lippmann {10] presents an introduction to several types of
neural networks, including a thorough discussion of
Kohonen's algorithm that is used to form these feature
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maps. Ajjimarangsee and Huntsberger [2] use multi-stage
self-organizing feature maps to model the fusion of visual
and thermal data that occurs in the optic tectumn of the rai-
tlesnake. Pearson, et al. {15] use self-organizing feature
maps to perform a computer simulation of the vi-
sual/acoustic sensor fusion techniques of the target-local-
ization system of the barn owl.

3.2 Advantages of neural networks

Some potential advantages that neural network models
offer in systems used for the integration and fusion of data
are the following: adaptive learning—they are capable of
learning how to do a task, based on training data, without
the need to incorporate a priori error data; self-organiza-
tion—they are able to create their own categories for clas-
sification of incoming data; parallel architecture—their
basic architecture is parallel in nature, making them easily
adaptable to macro-parallelism at the logic-gate hardware
level as well as micro-parallelism at the chip level;noise
filtering—back-propagation and autoassociative networks
have shown a natural ability to reduce the noise in an input
signal; fault rolerance—neural network architecture is in-
herently distributed, parallel, and highly interconnected, all
of which are qualities that promote non-localized data stor-
age, thus dampening the effects of partial system failure.
These and other qualities make neural networks a good

choice for sensor fusion.

4. HANDLING UNCERTAINTY IN MULTISENSOR
FUSION

It is often the rule, rather than the exception, that sensory
systems are able to supply only partial or uncertain
information about their environment. In object recognition,
occluded objects or insufficient lighting may be the reason
that only partial information is available. Uncertainty may
be caused by such things as noise corruption, an imperfect
degree of sensor-measurement reliability, and sensor mal-
function. Although the use of multiple sensors helps to re-
duce the amount of uncertainty, it will always be present in
real-world environments. Research in uncertainty calculus
examines techniques that can be used to improve the
quality of information that can be extracted from the
incomplete data that is collected about real-world
situations.

Some of the more common techniques that are currently
employed are the probabilistic methods of Bayesian estima-
tion, the evidential reasoning of Dempster-Shafer theory,
fuzzy set theory, and rule-based expert systems. Henkind
and Harrison [7] present an introduction to these four types
of uncertainty calculi and describe the advantages and dis-
advantages associated with each.



While there continues to be disagreement among experts
as to which technique is the most effective in handling un-
certainty, the Dempster-Shafer and fuzzy set techniques re-
quire the least a priori knowledge of statistics about the en-
vironment. A disadvantage of the Bayesian approach is that
it may difficult, if not impossible, to gather the appropriate
statistics for a given situation.

Another of the primary differences between the
Dempster-Shafer approach and the Bayesian approach is
that, with Dempster-Shafer, an interval of uncertainty is as-
sociated with the hypothesis that a proposition is true,
whereas the Bayesian method uses a single value to repre-
sent the probability that a proposition is true. This may lead
the users of the Bayesian technique to assign values to
probability measures without associating it with an appro-
priate quantity to designate the uncertainty or ignorance
that is inherent in the assignment.

Fuzzy set theory was presented initially by Zadeh in
1965 {22] as a technique in which uncertainty can be quan-
tified as a degree of set membership. For example, a fuzzy
set might be a set whose members are reasonably tall as
opposed to the crisp set whose members are of height
greater than 6’2" and shorter than 7’ 1all. Since many
recognition and classification problems in the real-world
are of a fuzzy nature, fuzzy set theory has been—and will
continue to be—very useful in multisensor fusion.

Rule-based systems are often most effective when used
for top-level control of systems rather than for low-level
multisensor fusion, and are therefore not likely to be used
for low-level fusion in systems that are based on large
numbers of redundant sensors. Noble [14] and Adelman [1]
note that problems in rule-based systems may arise due to
difficulties regarding the subjective nature of: knowledge-
elicitation techniques that are used to develop the data base
for a rule-based system; problem domain descriptions; and
the level of expertise that qualifies the knowledge experts
to be "expert enough" to develop the system properly.

5. CONCLUSION

Research in the near future will continue to be aimed at
developing integration and fusion techniques that will allow
multisensory systems to operate in unknown and dynamic
environments. Systems based on neural network architec-
ture will be implemented on highly parallel computer archi-
tectures to take full advantage of the parallelism inherent in
these models. Research in the areas of artificial
intelligence, unceriainty reasoiing, and fuzzy sets will con-
tinue to provide both theoretical and practical insights. Al-
based research may prove especially useful in areas like

sensor selection, automatic task error detection and re-
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covery, and the development of high-level representations;
research based on neural networks may have a large impact
in areas like object recognition through the development of
distributed representations suitable for the associative recall
of multisensory information, and in the development of
robust multisensor systems that are able to self-organize
and adapt to changing conditions (e.g., sensor [ailure).

The development of integrated solid-state chips contain-
ing multiple sensors will continue to be the focus of much
research [20]. As current progress in VLSI technology con-
tinues, “smart sensors” [13] will be developed that contain
many of their low-level signal and fusion processing algo-
rithms in circuits on the same chip as the sensor.

The availability of cheap integrated multisensors may
enable some recent ideas concerning “highly redundant
sensing” [18] to be incorporated into the design of intelli-
gent multisensor systems. The lateral inhibition of com-
petitive-learning neural networks may be especially use-
ful—when combined with dense populations of microsen-
sors—in the design of intelligent man-made systems that
are inspired by biological systems.

In the same way that sensory information precluded in-
telligence in biological life forms, the availability of sen-
sors on the microscopic scale is likely to lead to new under-
standings that are currently difficult to imagine.
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