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Abstract: To prevent the critical situation due to the fault in the aircraft sensor system, the fault tolerant system with triple or
quadruple redundancy can be made. However, if the faults are occurred in two or more than sensors simultaneoudly, the
conventional fault detection process, such as cross-channel monitoring, may give the wrong fault alarm. For this case, we can
detect the fault by estimating the state vector based on the system dynamics model, which is nonlinear for aircraft. In this paper, we
propose the unscented Kaman filter to estimate the nonlinear state vector. This filter utilizes the so-caled unscented
transformation of sigma points featured the statistical characteristics of the random variable. For verification, we perform the
simulations for F-16 aircraft with accelerometers, gyros, GPS and air data system.
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1. INTRODUCTION

When the sensor system for an aircraft breaks down
unexpectedly, this malfunction may give rise to degrade the
aircraft performance and fal into a dangerous situation. To
prevent this critical situation, the sensor system should be
configured with a redundant system, which is consisted of a
triple or quadruple of the same sensors. For this redundant
system, the cross-channel monitoring (CCM) technique is
useful for fault detection and isolation (FDI). If the difference
between a signa from the multiple sensors and their mean
value are larger than the prescribed threshold vaue over the
prescribed confirmation time, we can convince that the sensor
should be failed. Then we should reconfigure the system
except the falure so that we may recover the performance
degradation and the safety.

However, there are some cases to cause a wrong fault
alaam with CCM technique. If the only two sensors are
available, it cannot decide which sensor is out of order. In
addition, though the system is a triple or quadruple, if the
failure happens to both sensors at the same time, it may yield
the wrong fault alarm.

The aternative of fault detection is to use the estimated
state variables for the dynamic system. If the measurement
residual, which is defined as the difference between the
estimated and measured state variables, is larger than the
prescribed threshold value over the prescribed confirmation
time, then the fault alarmis given.

In general, the standard Kalman filter for a linear dynamic
system or the extended Kaman filter (EKF) for a nonlinear
dynamic system has been used as a state estimator. It is
important to note that EKF gives rise to the truncation error
induced by neglecting the second and higher order terms of
the Taylor-expanded non-linearity. Moreover, it is difficult to
implement EKF because of the derivation of the Jacobian
matrices and to tune the Kalman gain matrix and system
parameters practically. Sometimes EKF can yield highly
unstable filter if the assumption of local linearity around the
equilibrium point is violated. In most practical cases, the
linearization of EKF introduces the significant biases or errors.

In this paper, we use the unscented Kalman filter (UKF) as
a state estimator [1-3]. UKF is an aternative Kalman filter
based on the unscented transformation. The main idea of this
transformation is that the sigma points, which represent the
statistical characteristics of a given stochastic inputs, are
transformed through the nonlinear function, namely, nonlinear

dynamic system, and then the statistical characteristics for the
transformed sigma points represent those of the method.
Unlike to EKF, the convergence is not an issue in this method.
Also, the high order information of the state variables can be
computed with the small umber of transformed sigma points.
In these aspects, UKF compensates the drawbacks of EKF.

In this paper, we derive the nonlinear 6-DOF aircraft
dynamic model and design the state estimator with UKF. To
verify the proposed method, we perform the simulation for the
inertial measurement unit (IMU) and discuss simulation
results by comparing with those of EKF.

2. NONLINEAR AIRCRAFT MODEL

In general, if we assume that the x-z plane is a plane of
mass symmetry and the resultant torque from engine is zero,
the aircraft dynamic equations of motion in body frame are
given by
X, = fl()?l’ 7(2)"' g()?l' Y(Z,G) @
X, = fZ(Y(l’ 22) @)
where X, and X, are the dynamics and kinematics state
vectors, respectively, defined as

S
% :H { 01,0, O, G } @
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where (u,v, W) is the velocity of the center of mass with
respect to ground frame, (p,q,r) is the angular velocity
with respect to the ground frame, (ql,qz,q3,q4) is the
quaternion of the body frame with respect to the ground frame
and (X, Y, z) is the location of the aircraft in the ground

frame.
The dynamics terms of Eq. (1) are the nonlinear vectors
expressed as

'F1=|:\7><(6+ mlA]IEg} (5)
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J7T,

where m is the mass of the aircraft, Jis the moment of

- {ml(ﬁ ‘F, )} ©

inertia of the aircraft, Ifg is the gravitational acceleration

about the center of massin the ground frame, IEt isthe thrust

about the center of mass in the body frame, Ifa is the
aerodynamic force about the center of massin the body frame,

fa is the aerodynamic moment about the center of mass in

the body frame, A1 is the ground to body direction cosine
matrix defined as

A =(af -q-q) + 249" - 2q,[a.] ™
where [qx] is the skew-symmetric vector product matrix
defined as

0 -9, ¢
[]=| s 0 -q ®)
-0 q 0

The aerodynamic coefficients are obtained from the wind

tunnel test. Then the aerodynamic force and moment are

computed according to the corresponding flight condition,

namely, the state vector and control surface deflection angle.
The kinematics part of Eq. (2) can be written by

- 79,0
f,= °
Aqv

where Q) isthe skew-symmetric quaternion product matrix

Q, = [_‘__[f_"_]_l?’} (10)

where [a)x] is the skew-symmetric vector product matrix for

the angular rate vector.

We can use severa sensors to measure or compute the state
vector of the aircraft. The inertial measurement unit (IMU)
including accelerometers and gyros along each axis measures
the applied acceleration except the gravitational acceleration
and the applied angular rate. The attitude heading and
reference system (AHRS) computes the attitude and heading
angles of the aircraft body frame with respect to the ground
frame. These angles can be easily expressed as the quaternion.
The global positioning system (GPS) produces the position
information of the aircraft with respect to the ground frame.
The air data system outputs not only the atmospheric
temperature but also static and dynamic pressure. The
measurements from these sensors have the high frequency
errors inevitably. Moreover, they may include the low
frequency errors such as bias, drift, misaignment, etc. For
simplicity, however, we assume that the low frequency errors
have been compensated perfectly. Then the measurement
equations are given by

©9)

(ixa+m(E +F))ig,| [T
5 n
y= © o (12)
q L
p Np
where n,, 0, ﬁq and ﬁp are the white noise vector

with the zero mean and the covariance of R,, R,, R, and

R, , respectively.

3. UNSCENTED KALMAN FILTER

The unscented Kaman filter (UKF) proposed by Simon
Julier et a. is an approximation method for the state
distribution of the nonlinear model [1-3]. This method utilizes
the so-called unscented transformation, which is a nonlinear
transformation. The transformation uses a finite number of
sampled sigma points to characterize the statistics of true
distribution. The UKF propagate the statistics of the sigma
points though the nonlinear system model and then compute
the dtatistics of the transformed sigma points. Because the
sigma points are transformed through the true nonlinear model,
we can obtain more accurate mean and covariance of the state
distribution. In this section, we describe the unscented trans-
formation and summary the unscented Kaman filter in brief

3.1 Unscented transfor mation

Given a random varisble X € R™ with the mean m,
and covariance P,,, the problem addressed in the unscented
transformation is to compute the mean Fny and covariance

P, of the second random variable § = f(X)e R™". The

first step is to approximate the n-by-1 random variable X
with the 2n-by-1 weighted sigma points given by

Xy =M (12)

- m:+( (n+~)P, ) (13)

Xi+n =m, - (m)l (14)

where x is a scaling parameter to tune the higher order
moments of the approximation so as to reduce the overal
errors. For matrix square root, we can use numerically
efficient and stable methods such as Cholesky decomposition.
The second step is to propagate the sigma points through the
nonlinear function

Y = f(x,) 1s)
The third step is to compute the mean and covariance from the
transformed sigma points

2n -
i, = WY, as)
i=0
2n . .
Py = ZVV,[Y, - rﬁy][Yi _my]T 17
i-0
where W isthe weight given by
W, =& (18)
n+x
1
W=—1"="—_ 19
B 19
1
W, =—— 20
b ) 20

Although x can be selected as to be positive or negative, it
is obvious that a negative choice of x can make a

non-positive semi-definite of Pyy . For Gaussian distributions,
wecanselect N+ x =3 heuristicaly.
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3.2 Unscented Kalman filter

The unscented transformation described in the previous
section can be applied to the Kaman filter directly. For
simplicity, we assume that the measurement noise is additive.

Consider the system and measurement models given by

X = F(Rk’uk'vk' k) (21
Vie = G(%e, G, k) + (22)
where V, and W, are the process and measurement noise
vectors with zero-mean and covariance

ENvT]=6,Q. foral i and | (23)
Eww |=6,R, foral i and | (24)
Ela]=o0, foral i and j (25)

The Kaman filter has the two-step structure of the
prediction and update processes. First, the prediction process
of Kalman filter is given by

ikﬂtk = E[F(XK’GK'VKX(VM'"!VK )] (26)
Pk+:uk - E[(Xm - ):(kuthy(m - ):(kntk)T (371" - Y )} (@7)

where the subscript (')Mk means the a priori quantity. It is

obvious that f and g are nonlinear and thus it is hard to

compute these estimation of prediction process. Next, the
update process of Kalman filter is given by

Xk+:IJ k+1 Xk+:u k K k+15k+1 (28)
Pk+:u k1~ Pk+:u k -K k+1 Pk+:u k K |I+1 (29)
Ky = k)i);t K [Pkﬂ K } (30)

where the subscript (')kﬂtkﬂ means the a posteriori quantity,
K., istheKaman gain matrix, 8,4 = Yy, — ykwk isthe

measurement residual and P el is the innovation covariance.

It is important to note that the update process can be obtained
from the estimated mean and covariance of X,,, and VY, ;.
Thus the unscented Kalman filter can be derived by applying
the unscented transformation to estimate the mean and
covarianceof X, and V,,;.

The moments of the state and measurement vectors can be
derived asfollows:
1) Mean thk and covariance qu

Since the state model is the nonlinear function of the state and
process noise vectors, however, the new state vector is
augmented with the state and process noise vectors.

ca Xk
= 31
X L—/k (31)
Then its mean and covariance become
- )—A(a
oa
X = gk (32)
P XV
ka _ k)\: k|k (33)
k\k Qk

where Pk‘k is the correlation matrix between the error state

and process noise vectors. The sigma points for the augmented
state vector are given by
- XX
Xiak:{*"k} for i =0,---,2n* (34)
’ Xiv,k

where n® =n+(q is the dimension of the augmented state

vector. They are generated by Xk‘k,xk‘k +( lin +K‘iPkaj
and xk‘k (,[in +/<iFf“kj . Then the state propagation

process becomes
Xixk+1 =f (xixk’ Xi\,lk 'uk’k) (35)
k+;qk ZW XI k+1 (36)
AN X S W X S T
k+]Jk ZW [Xl k+l T k+:uk ][xl K+l T Xk+ﬂk] (37

2) Mean §/k+ﬂk and covariance B”, ek
Similarly, the estimated measurement vector }:/kﬁtk and its
covariance P el become

Vi = Q(Xi ki Ugsns K+ 1) (38)
yk{uk Z ik+1 (39)

Pkyqu R+ ZW [Y| kel yk+qk][Y| kel yk{uk] (40)

Since we assume that the measurement noise is additive and
independent, the measurement covariance R, ,; is added to
the estimated covariance.

3) Cross-correlation matrix Pkiyuk

Finally, the cross-correlation matrix Pk?;tk becomes
RN (|
k+]Jk ZW XI k+1 k+;qk ikl yk+:uk (41)

Now we can establish the unscented Kalman filter by
substituting Egs.(36), (37), (40) and (41) into Egs.(28) ~ (30).
For various nonlinear systems, for example, systems with non-
additive measurement noise or colored process/measurement
noise, we can derive the unscented Kalman filter with a
similar manner.

4. FAULT DETECTION AND ISOLATION

In the previous sections, we derived the nonlinear aircraft
equations of motion and the unscented Kalman filter for a
nonlinear system. Since there is no process noise term in the
aircraft system model, the UKF do not use the augmented state
vector and thus becomes simpler for this case. In this section,
we describe the fault detection process using the measurement
residua defined as the difference between the actual and
estimated sensor outputs.

The functional block diagram for the proposed FDI process
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is given in Fig. 1. The aircraft state vector is not only
measured from sensors but also estimated by UKF. While the
measured state vector includes the high-frequency errors, the
estimated state vector is the low-frequency part obtained
through UKF. If there is a fault, thus, the measurement
residua becomes the high-frequency components. Otherwise,
the measurement residual includes both the state estimation
errors and the high-frequency errors. Since the former is larger
than the latter clearly, we can confirm the fault by checking
whether the measurement residual is larger than the threshold
value during the confirmation time. Once the fault alarm
occurs, the fault sensor should be isolated.

Fig. 1 Functional block diagram for FDI using UKF

For UKF design, the discrete aircraft model can be
obtained by applying Euler integration method to the
continuous nonlinear system model of Egs.(1), (2) and (6)

Xiea = % + TR, )- AT

yk+1 = g(xk+l)+ ﬁ|<+1
where AT isthe sampling time. Then the transformed sigma
points become

X| kel = X| Kkt f( |k'uk)'AT

Vi = Q(Xi,k+1’ Uk+1)

and thus the UKF can be summarized as shown in Table 1. It
is obvious that the UKF requires the full-state feedback to
estimate the state vector of the nonlinear system model.

5.SIMULATION

For the verification of the proposed FDI method, the
simulations are performed for F-16 aircraft model [4]. The
sensors are accelerometers, gyros, GPS, and air data system.
Three accelerometers and three rate gyros provides a complete
6 degree of freedom solution of aircraft dynamics at a rate of
100Hz. GPS produces the position and ground speed data at a
rate of 1Hz. The air data system gives the static and dynamic
pressure and the outside temperature at a rate of 1Hz. All
sensors are double for a fault tolerant system. It is assumed
that the fault in a gyro in yaw axis is occurred during the
coordinate turn.

Fig. 2 shows the yaw-axis angular rate measurements. The
malfunction is occurred in the second gyro at 40 seconds and
the gyro produces an abnormal measurements. Fig. 3 shows
the measurement residual between the measured and estimated
angular rates when the fault detection and isolation process is
not applied. It is obvious from Fig. 3 that the second gyro
measurement residual after the fault is biased. If we do not
apply the isolation process to the broken gyro, the wrong
measurements affect the estimation of the state. Fig. 4 and 5
show the yaw angle and rate estimation errors for the case
without FDI and with FDI, respectively.

Table 1 Unscented Kaman filter for nonlinear aircraft model

1) Propagation process
~ 2n =
)_Zkﬁuk = Zvvixi,k-ﬂ

yk+;q k Z ik+1

— ~ T
k+JJk ZW[ Xija = k+ﬂk][xi,k+1_xk+qk]
2) Measurement residual

O = Yiew — ykﬂ“(
k+1‘k Rk+1 + ZW [Yi,k+1 - §/k+qk]ﬁ,k+1 - ):/kJqu]T

Pk)zl.‘k ) O\Ni [>—(i>,(k+1 - ):(qu][?i,ku - ):/k{qk]-r
3) Update process
1

K k+1 — Pk+:u k Pk+]J k

XkﬁlJ kil = )a(kﬁuk + Kk+15k+1
P..=P_ —K.P% K,

k+1k+1 k+1k k+1" k+1lk

6. CONCLUSION

In this paper, we proposed the aircraft sensor fault
detection algorithm using the unscented Kalman filter. This
detects the fault signal from sensor by estimating the state
vector using the unscented transformation of the sigma points
and checking the measurement residual. The advantage of the
unscented Kaman filter is that we can estimate the state
vector of nonlinear system more accurately than the
conventional nonlinear filter such as extended Kaman filter.
From the simulation results for the gyro mafunction, we can
confirm that al fault signals in sensors can be detected by
using the unscented Kalman filter. For the further study, we
plan to extend the fault detection and isolation to the sensor
including the process noise, such as, bias, drift, misalignment,
etc.
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Fig. 2 Yaw axis angular rate measurements from gyros
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Fig. 3 Measurement residual without FDI
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Fig. 4 State estimation error without FDI
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Fig. 5 State estimation error with FDI
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