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1. INTRODUCTION 
 

When the sensor system for an aircraft breaks down 
unexpectedly, this malfunction may give rise to degrade the 
aircraft performance and fall into a dangerous situation. To 
prevent this critical situation, the sensor system should be 
configured with a redundant system, which is consisted of a 
triple or quadruple of the same sensors. For this redundant 
system, the cross-channel monitoring (CCM) technique is 
useful for fault detection and isolation (FDI). If the difference 
between a signal from the multiple sensors and their mean 
value are larger than the prescribed threshold value over the 
prescribed confirmation time, we can convince that the sensor 
should be failed. Then we should reconfigure the system 
except the failure so that we may recover the performance 
degradation and the safety. 

However, there are some cases to cause a wrong fault 
alarm with CCM technique. If the only two sensors are 
available, it cannot decide which sensor is out of order. In 
addition, though the system is a triple or quadruple, if the 
failure happens to both sensors at the same time, it may yield 
the wrong fault alarm. 

The alternative of fault detection is to use the estimated 
state variables for the dynamic system. If the measurement 
residual, which is defined as the difference between the 
estimated and measured state variables, is larger than the 
prescribed threshold value over the prescribed confirmation 
time, then the fault alarm is given. 

In general, the standard Kalman filter for a linear dynamic 
system or the extended Kalman filter (EKF) for a nonlinear 
dynamic system has been used as a state estimator. It is 
important to note that EKF gives rise to the truncation error 
induced by neglecting the second and higher order terms of 
the Taylor-expanded non-linearity. Moreover, it is difficult to 
implement EKF because of the derivation of the Jacobian 
matrices and to tune the Kalman gain matrix and system 
parameters practically. Sometimes EKF can yield highly 
unstable filter if the assumption of local linearity around the 
equilibrium point is violated. In most practical cases, the 
linearization of EKF introduces the significant biases or errors. 

In this paper, we use the unscented Kalman filter (UKF) as 
a state estimator [1-3]. UKF is an alternative Kalman filter 
based on the unscented transformation. The main idea of this 
transformation is that the sigma points, which represent the 
statistical characteristics of a given stochastic inputs, are 
transformed through the nonlinear function, namely, nonlinear 

dynamic system, and then the statistical characteristics for the 
transformed sigma points represent those of the method. 
Unlike to EKF, the convergence is not an issue in this method. 
Also, the high order information of the state variables can be 
computed with the small umber of transformed sigma points. 
In these aspects, UKF compensates the drawbacks of EKF. 
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In this paper, we derive the nonlinear 6-DOF aircraft 
dynamic model and design the state estimator with UKF. To 
verify the proposed method, we perform the simulation for the 
inertial measurement unit (IMU) and discuss simulation 
results by comparing with those of EKF. 

 
2. NONLINEAR AIRCRAFT MODEL 

 
In general, if we assume that the x-z plane is a plane of 

mass symmetry and the resultant torque from engine is zero, 
the aircraft dynamic equations of motion in body frame are 
given by r
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where 1x  and 2x
r

 are the dynamics and kinematics state 
vectors, respectively, defined as 
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where ( )wvu ,,  is the velocity of the center of mass with 

respect to ground frame, ( )rqp ,,  is the angular velocity 

with respect to the ground frame,  is the 
quaternion of the body frame with respect to the ground frame 
and 

( )4321 ,,, qqqq

( )zyx ,,  is the location of the aircraft in the ground 
frame. 

The dynamics terms of Eq. (1) are the nonlinear vectors 
expressed as 
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where  is the mass of the aircraft, is the moment of 

inertia of the aircraft, 

m J

gF
r

 is the gravitational acceleration 

about the center of mass in the ground frame, tF
r

 is the thrust 

about the center of mass in the body frame, aF
r

 is the 
aerodynamic force about the center of mass in the body frame, 

aT
r

 is the aerodynamic moment about the center of mass in 

the body frame,  is the ground to body direction cosine 
matrix

qA
 defined as 
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where  is the skew-symmetric vector product matrix 
defined as 

[ ]×q
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The aerodynamic coefficients are obtained from the wind 
tunnel test. Then the aerodynamic force and moment are 
computed according to the corresponding flight condition, 
namely, the state vector and control surface deflection angle. 

The kinematics part of Eq. (2) can be written by 
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where  is the skew-symmetric quaternion product matrix 
defined as 

ωΩ
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where  is the skew-symmetric vector product matrix for 
the angular rate vector. 

[ ×ω ]

ns are given by 

We can use several sensors to measure or compute the state 
vector of the aircraft. The inertial measurement unit (IMU) 
including accelerometers and gyros along each axis measures 
the applied acceleration except the gravitational acceleration 
and the applied angular rate. The attitude heading and 
reference system (AHRS) computes the attitude and heading 
angles of the aircraft body frame with respect to the ground 
frame. These angles can be easily expressed as the quaternion. 
The global positioning system (GPS) produces the position 
information of the aircraft with respect to the ground frame. 
The air data system outputs not only the atmospheric 
temperature but also static and dynamic pressure. The 
measurements from these sensors have the high frequency 
errors inevitably. Moreover, they may include the low 
frequency errors such as bias, drift, misalignment, etc. For 
simplicity, however, we assume that the low frequency errors 
have been compensated perfectly. Then the measurement 
equatio
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r r r r
where an , ωn , qn  and pn  are the white noise vector 

with the zero mean and the covariance of , , and 

, respectively. 
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3. UNSCENTED KALMAN FILTER 

 
The unscented Kalman filter (UKF) proposed by Simon 

Julier et al. is an approximation method for the state 
distribution of the nonlinear model [1-3]. This method utilizes 
the so-called unscented transformation, which is a nonlinear 
transformation. The transformation uses a finite number of 
sampled sigma points to characterize the statistics of true 
distribution. The UKF propagate the statistics of the sigma 
points though the nonlinear system model and then compute 
the statistics of the transformed sigma points. Because the 
sigma points are transformed through the true nonlinear model, 
we can obtain more accurate mean and covariance of the state 
distribution. In this section, we describe the unscented trans- 
formation and summary the unscented Kalman filter in brief 
 
3 .1 Unscented transformation 

Given a random variable 1×ℜ∈ nx
r

 with the mean xm
r

 

and covariance , the problem addressed in the unscented 

transformation is to compute the mean 
xxP

 and covariance 

of the second random variable = my
r

. The 

first step is to approximate the n-by-1 random variable x
r

 
with the 2n-by-1 weighted sigma points given by 
r
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where κ  is a scaling parameter to tune the higher order 
moments of the approximation so as to reduce the overall 
errors. For matrix square root, we can use numerically 
efficient and stable methods such as Cholesky decomposition. 
The second step is to propagate the sigma points through the 
nonline r function 

rrr
a  
( )iXf                 (15) 

The third step is to compute the mean and covariance from the 
transformed sigma points 
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where  is the weight given by iW

κ
κ
+

=
n

               (18) 

( )κ+=
n2

1
              (19) 

( )κ+=
n2

1
              (20) 

κAlthough  can be selected as to be positive or negative, it 
is obvious that a negative choice of  can make a 
non-positive semi-definite of . For Gaussian distributions, 

we can select 
yyP

3=+ κn  heuristically. 
 



ICCAS2003                           October 22-25, Gyeongju TEMF Hotel, Gyeongju, Korea  
 

    
3 .2 Unscented Kalman filter where xv

kkP  is the correlation matrix between the error state 

and process noise vectors. The sigma points for the augmented 
state vector are given by 

The unscented transformation described in the previous 
section can be applied to the Kalman filter directly. For 
simplicity, we assume that the measurement noise is additive. 
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The Kalman filter has the two-step structure of the 
prediction and update processes. First, the prediction process 
of Kalman f ∑
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2) Mean kky 1
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r
 and covariance yy
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where the subscript ( ) kk 1+⋅  means the a priori quantity. It is 

obvious that f
r

 and g
r

 are nonlinear and thus it is hard to 
compute these estimation of prediction process. Next, the 
update process of Kalman filter is given by 

Similarly, the estimated measurement vector kky 1
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covariance yy
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where the subscript ( ) 11 ++⋅ kk  means the a posteriori quantity, 

 is the Kalman gain matrix, 1+kK kkkk yy 111
ˆ

+++ −=
rrr

δ  is the 

measurement residual and yy
kkP 1+  is the innovation covariance. 

It is important to note that the update process can be obta ned 
from the estimated mean and covariance of 

i
1+kx

r
 and 1+ky

r
.  

Thus the unscented Kalman filter can be derived by applying 
the unscented transformation to estimate the mean and 
covariance of 1+kx

r
 and 1+ky

r
. 

Since we assume that the measurement noise is additive and 
independent, the measurement covariance  is added to 
the estimated covariance. 

1+kR

 
3) Cross-correlation matrix xy

kkP 1+  

Finally, the cross-correlation matrix xy
kkP 1+  becomes 
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The moments of the state and measurement vectors can be 
derived as follows: Now we can establish the unscented Kalman filter by 

substituting Eqs.(36), (37), (40) and (41) into Eqs.(28) ~ (30). 
For various nonlinear systems, for example, systems with non- 
additive measurement noise or colored process/measurement 
noise, we can derive the unscented Kalman filter with a 
similar manner. 

1) Mean kkx 1
ˆ

+

r
 and covariance kkP 1+  

Since the state model is the nonlinear function of the state and 
process noise vectors, however, the new state vector is 
augmented with the state and process noise vectors. 
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4. FAULT DETECTION AND ISOLATION 
 

In the previous sections, we derived the nonlinear aircraft 
equations of motion and the unscented Kalman filter for a 
nonlinear system. Since there is no process noise term in the 
aircraft system model, the UKF do not use the augmented state 
vector and thus becomes simpler for this case. In this section, 
we describe the fault detection process using the measurement 
residual defined as the difference between the actual and 
estimated sensor outputs. 

Then its mean and covariance become 
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The functional block diagram for the proposed FDI process 
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is given in Fig. 1. The aircraft state vector is not only 
measured from sensors but also estimated by UKF. While the 
measured state vector includes the high-frequency errors, the 
estimated state vector is the low-frequency part obtained 
through UKF. If there is a fault, thus, the measurement 
residual becomes the high-frequency components. Otherwise, 
the measurement residual includes both the state estimation 
errors and the high-frequency errors. Since the former is larger 
than the latter clearly, we can confirm the fault by checking 
whether the measurement residual is larger than the threshold 
value during the confirmation time. Once the fault alarm 
occurs, the fault sensor should be isolated. 

Table 1 Unscented Kalman filter for nonlinear aircraft model 
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2) Measurement residual 
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3) Update process 
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Fig. 1 Functional block diagram for FDI using UKF 
 

For UKF design, the discrete aircraft model can be 
obtained by applying Euler integration method to the 
continuous no linear system model of Eqs.(1), (2) and (6) r

 
n 6. CONCLUSION 
( ) Tuxfxx kkkk ∆⋅+=+

rrrr
,1  
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In this paper, we proposed the aircraft sensor fault 

detection algorithm using the unscented Kalman filter. This 
detects the fault signal from sensor by estimating the state 
vector using the unscented transformation of the sigma points 
and checking the measurement residual. The advantage of the 
unscented Kalman filter is that we can estimate the state 
vector of nonlinear system more accurately than the 
conventional nonlinear filter such as extended Kalman filter. 
From the simulation results for the gyro malfunction, we can 
confirm that all fault signals in sensors can be detected by 
using the unscented Kalman filter. For the further study, we  
plan to extend the fault detection and isolation to the sensor 
including the process noise, such as, bias, drift, misalignment, 
etc. 

( ) 111 +++ += kkk nxgy  
where  is the sampling time. Then the transformed sigma 
points become 

T∆
rr ( ) TuXfXX kkikiki ∆⋅+=+

rrr
,,,1,  

rrrr ( )11,1, , +++ = kkiki uXgY  
and thus the UKF can be summarized as shown in Table 1. It 
is obvious that the UKF requires the full-state feedback to 
estimate the state vector of the nonlinear system model. 

 
5. SIMULATION 

 
For the verification of the proposed FDI method, the 

simulations are performed for F-16 aircraft model [4]. The 
sensors are accelerometers, gyros, GPS, and air data system. 
Three accelerometers and three rate gyros provides a complete 
6 degree of freedom solution of aircraft dynamics at a rate of 
100Hz. GPS produces the position and ground speed data at a 
rate of 1Hz. The air data system gives the static and dynamic 
pressure and the outside temperature at a rate of 1Hz. All 
sensors are double for a fault tolerant system. It is assumed 
that the fault in a gyro in yaw axis is occurred during the 
coordinate turn. 
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Fig. 2 Yaw axis angular rate measurements from gyros Fig. 4 State estimation error without FDI 
  

  
  

Fig. 3 Measurement residual without FDI Fig. 5 State estimation error with FDI 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


	Main Menu
	Previous Menu
	===============
	Search CD-ROM
	Print

	page11: 2335
	page21: 2336
	page31: 2337
	page41: 2338
	page51: 2339


