• Title/Summary/Keyword: reduction-to-the-pole

Search Result 144, Processing Time 0.026 seconds

Experimental Evaluation of the Moment Capacity of a Railway Electric Pole Foundation Adjacent to a Fill Slope (실물 재하시험을 통한 성토사면에 근접한 철도 전철주기초의 저항모멘트 평가)

  • Lee, Su-Hyung;Lee, Sung-Jin;Lee, Il-Wha
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.6
    • /
    • pp.5-17
    • /
    • 2012
  • The moment responses of electric pole foundations for a railway were investigated using real-scale load tests. Large overturning moments were applied to two circular rigid piles with a 0.75 m diameter and a 2.5 m embedded depth; the circular rigid piles were installed in an actual railway embankment fill. Two different loading directions-toward the fill slope and toward the track -were applied to evaluate the influence of the fill slope on the moment capacities of the foundations. It was found that the failure of the foundations that were constructed according to Korean railway practices exhibited a sudden overturning pattern without any significant pre-failure displacement. The moment capacity toward the fill slope was less than the moment capacity toward the track by 30%. From the test results, the geometry factor (K), which accounted for the reduction of the moment capacity, due to the fill slope, was 0.7. Moment capacities determined from the load tests were compared with those predicted from three existing design methods, and their applicability was discussed.

Moment Resisting Behaviors of Railway Electric Pole Foundation According to Form Work Methods (거푸집 설치 방법에 따른 철도 전철주기초의 모멘트 저항 거동)

  • Lee, Su-Hyung;Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.411-417
    • /
    • 2013
  • The moment responses of electric pole foundations for a railroad were investigated using real-scale load tests. Large overturning moments were applied to two square rigid piles with a 1.1 m width and a 2.2 m embedded depth. Two different installation methods-with and without a form-were applied to evaluate the influence of the form work on the moment capacities of the foundations. The reduction of ground strength caused by the excavation without a form is more pronounce than the decrease of frictional strength due to the smooth concrete surface with a form. From the test results, it is found that the current design method which applies a proportional coefficient to consider the effect of a form work is not appropriate. When the normal and frictional stressed is considered separately, the effect of a form work can be estimated reasonably by reducing the friction angle between soil and foundation by 20%.

Cogging Torque Reduction in Line Start Permanent Magnet Synchronous Motor

  • Behbahanifard, Hamidreza;Sadoughi, Alireza
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.878-888
    • /
    • 2016
  • Cogging torque has a negative impact on the operation of permanent magnet machines by increasing torque ripple, speed ripple, acoustic noise and vibration. In this paper Magnet Shifting Method has been used as a tool to reduce the cogging torque in inset Line Start Permanent Magnet Synchronous Motor (LSPMSM). It has been shown that Magnet Shifting Method can effectively eliminate several lower-order harmonics of cogging torque. In order to implement the method, first the expression of cogging torque is studied based on the Fourier analysis. An analytical expression is then introduced based on Permanent Magnet Shifting to reduce cogging torque of LSPMS motors. The method is applied to some existing machine designs and their performances are obtained using Finite Element Analysis (FEA). The effect of magnet shifting on pole mmf (magneto motive force) distribution in air gap is discussed. The side effects of magnet shifting on back-EMF, core losses and torque profile distortion are taken into account in this investigation. Finally the experimental results on two prototypes 24 slot 4 pole inset LSPMS motors have been used to validate the theoretical analysis.

Design and Implementation of Crosstalk Canceller Using Warped Common Acoustical Poles (주파수 워핑된 공통 극점을 이용한 음향 간섭제거기의 설계 및 구현)

  • Jeong, Jae-Woong;Park, Young-Cheol;Youn, Dae-Hee;Lee, Seok-Pil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.5
    • /
    • pp.339-346
    • /
    • 2010
  • For the implementation of the crosstalk canceller, the filters with large length are needed, which is because that the length of the filters greatly depends on the length of the head-related impulse responses. In order to reduce the length of the crosstalk cancellation filters, many methods such as frequency warping, common acoustical pole and zero (CAPZ) modeling have been researched. In this paper, we propose a new method combining these two methods. To accomplish this, we design the filters using the CAPZ modeling on the warped domain, and then, we implement the filters using the poles and zeros de-warped to the linear domain. The proposed method provides improved channel separation performance through the frequency warping and significant reduction of the complexity through the CAPZ modeling. These are confirmed through various computer simulations.

Rotor Shape Design of an Interior PM Type BLDC Motor for Improving Mechanical Vibration and EMI Characteristics

  • Hur, Jin;Kim, Byeong-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.462-467
    • /
    • 2010
  • This paper presents the rotor shape optimization of an interior type permanent magnet (IPM) motor for a reduction of vibration and Electromagnetic Interference (EMI). The vibration and EMI in permanent magnet motors is generated by cogging torque ripple, radial force and commutation torque ripple. Consequently, in order to improve vibration and EMI, the optimal notches are put on the rotor pole with an arc shape proposed. The variation of vibration frequency due to the cogging torque and radial force of each model is computed by the finite element method (FEM). From the analysis result and experiment, we confirmed the proposed model has remarkably improved the vibration and EMI.

Harmonics Reduction in the High-Speed Synchronous Reluctance Motor by Space-Vector PWM Control

  • Oh, Sung-Up;Kim, Min-Tae;Seong, Se-Jin;Paek, Tong-Ki
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.758-762
    • /
    • 1998
  • Many harmonics components are contained within the stator currents of the high-speed synchronous reluctance motor, SynRM, with salient pole rotor. They cause the power factor of SynRM to get worse. In this paper, the mathematical model of SynRM is investigated, and SV_PWM control method is applied to reduce harmonics components in the stator current. Simulation results show the fast response of speed and the reduction of harmonics components at steady state.

  • PDF

Reduction of Torque Ripple of PMSM Using Iterative Flux Estimation

  • Lee D. H.;Kim C. H.;Kwon Y. A.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.346-350
    • /
    • 2001
  • PMSM drives are widely used in the industrial and residential applications because of high efficiency, high power density and high performance. For better performance of PMSM, however, torque ripples should be reduced. This paper investigates a reduction of torque ripple due to the unsinusoidal flux linkage produced by the shapes of stator slot and magnetic pole. To minimize torque ripple, a simple flux estimator is proposed. This method interatively compensates the distributed flux linkage from an error between the measured and estimated currents. The proposed algorithm is verified through simulation.

  • PDF

Reduction of Torque Ripple of Permanent Magnet Synchronous Motor (영구자석 동기전동기의 토크 리플 저감 운전)

  • Lee, D.H.;Lee, J.H.;Kim, Y.S.;Kim, J.H.;Kwon, Y.A.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.918-920
    • /
    • 2001
  • PMSM drives are widely used in industrial and residential applications because of high efficiency, high power density and high performance. For better performance of PMSM, however, torque ripples should be reduced. This paper investigates a reduction of torque ripple due to the unsinusoidal flux linkage produced by the shapes of stator slot and magnetic pole. To minimize torque ripple, a simple flux estimator is proposed. This method iteratively compensates the distributed flux linkage from an error between the measured and estimated currents. The proposed algorithm is verified through simulation.

  • PDF

Analysis and Design of 12/14 Bearingless Switched Reluctance Motor for Self-Starting and Torque Ripple Reduction (자기기동 및 토크리플 저감을 위한 12/14 베어링리스 SRM의 설계 및 특성해석)

  • Xu, Zhenyao;Lee, Dong-Hee;An, Young-Ju;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.682-684
    • /
    • 2015
  • A 12/14 bearingless switched reluctance motor (BLSRM) with hybrid stator poles has been proposed due to the outstanding decoupling characteristics between the torque and suspending force. However, the motor is a two-phase motor. The output torque of the motor has torque dead zone and high torque ripple. Hence, the motor cannot self-start at some rotor positions. To solve the self-starting problems and reduce the torque ripple, a stepped rotor is proposed in this paper. Then, the motor with the stepped rotor is optimally designed. In the new designed motor, the majority parameters are kept the same with those of original motor; only the torque pole arc and rotor pole shape are optimally designed. The characteristics of the redesigned motor, such as inductance, torque and suspending force, are analyzed and compared with those in the original motor. Finally, the effectiveness of the proposed method is verified by the simulation results.

  • PDF

A Study on Input Multiplexer for Ku-Band Satellite Transponder (Ku 대역 위성 중계기용 입력 멀티플렉서에 관한 연구)

  • 이주섭;엄만석;염인복;이성팔
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.4
    • /
    • pp.393-400
    • /
    • 2003
  • This paper deals with the design and manufacturing technique of EQM(Engineering Qualification Model) of input multiplexer(IMUX) for the Ku-band satellite transponder. Channel dropping method by circulator chain structure is adopted for demultiplexing each channel. External equalizers are attached behind channel filters fur reduction of group delay variation and amplitude variation simultaneously. Both channel filters and equalizers adopted dual-mode technique in design f3r mass and volume reduction. Channel filters are designed to have 8-pole elliptic response and equalizers to be of 2-pole reflection type. For good temperature stability characteristics, INVAR36 material is used for channel filters and external equalizers. Vibration test, Thermal Vacuum Test, and EMC test have been performed on input multiplexer and it is shown to be suitable for Ku-band satellite transponder.