• Title/Summary/Keyword: reduction-diffusion process

Search Result 143, Processing Time 0.024 seconds

Application of Phase-Field Theory to Model Uranium Oxide Reduction Behavior in Electrolytic Reduction Process (전해환원 공정의 우라늄 산화물 환원 거동 모사를 위한 Phase-Field 이론 적용)

  • Park, Byung Heung;Jeong, Sang Mun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.3
    • /
    • pp.291-299
    • /
    • 2018
  • Under a pyro-processing concept, an electrolytic reduction process has been developed to reduce uranium oxide in molten salt by electrochemical means as a part of spent fuel treatment process development. Accordingly, a model based on electrochemical theory is required to design a reactor for the electrolytic reduction process. In this study, a 1D model based on the phase-field theory, which explains phase separation behaviors was developed to simulate electrolytic reduction of uranium oxide. By adopting parameters for diffusion of oxygen elements in a pellet and electrochemical reaction rate at the surface of the pellet, the model described the behavior of inward reduction well and revealed that the current depends on the internal diffusion of the oxygen element. The model for the electrolytic reduction is expected to be used to determine the optimum conditions for large scale reactor design. It is also expected that the model will be applied to simulate the integration of pyro-processing.

A Study on the Intelligent Load Management System Based on Queue with Diffusion Markov Process Model (확산 Markov 프로세스 모델을 이용한 Queueing System 기반 지능 부하관리에 관한 연구)

  • Kim, Kyung-Dong;Kim, Seok-Hyun;Lee, Seung-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.891-897
    • /
    • 2009
  • This paper presents a novel load management technique that can lower the peak demand caused by package airconditioner loads in large apartment complex. An intelligent hierarchical load management system composed of a Central Intelligent Management System(CIMS) and multiple Local Intelligent Management Systems(LIMS) is proposed to implement the proposed technique. Once the required amount of the power reduction is set, CIMS issues tokens, which can be used by each LIMS as a right to turn on the airconditioner. CIMS creates and maintains a queue for fair and proper allocation of the tokens among the LIMS requesting tokens. By adjusting the number tokens and queue management policies, desired power reduction can be achieved smoothly. The Markov Birth and Death process and the Balance Equations utilizing the Diffusion Model are employed for evaluation of queue performances during transient periods until the static balances among the states are achieved. The proposed technique is tested using a summer load data of a large apartment complex and give promising results demonstrating the usability in load management while minimizing the customer inconveniences.

Chloride diffusion study in different types of concrete using finite element method (FEM)

  • Paul, Sajal K.;Chaudhuri, Subrata;Barai, Sudhirkumar V.
    • Advances in concrete construction
    • /
    • v.2 no.1
    • /
    • pp.39-56
    • /
    • 2014
  • Corrosion in RCC structures is one of the most important factors that affects the structure's durability and subsequently causes reduction of serviceability. The most severe cause of this corrosion is chloride attack. Hence, to prevent this to happen proper understanding of the chloride penetration into concrete structures is necessary. In this study, first the mechanism of this chloride attack is understood and various parameters affecting the process are identified. Then an FEM modelling is carried out for the chloride diffusion process. The effects of fly ash and slag on the diffusion coefficient and chloride penetration depth in various mixes of concretes are also analyzed through integrating Virtual RCPT Lab and FEM.

Effective Diffusion Coefficient in the Porous Media (다공성 미디아에 있어서 유효확산계수)

  • Jeehyeong Khim
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.2
    • /
    • pp.83-90
    • /
    • 1996
  • A diffusion process is often the main mechanism of soil gas/vapor movement in the vadose zone. The diffusion coefficients in the porous soil media are different from those in the free air phase by the reduction of available area for diffusion, tortuous diffusion path and variable cross section area along the diffusion path. To take account those effects of the diffusion process in the porous media, usually the terms of effective diffusion coefficient and tortuosity are have been used. However, as there are many differents definitions for the tortuosity, when the term of tortuosity is used, it is necessary to examine it throughly. Moreover, there are many different equations for the effective diffusion coefficient according to the investigators and the differences in the values of effective diffusion coefficients between the equations are not insignificant, the selection of the equation should be done with caution. In this paper, the different definitions of effective diffusion coefficient are examined and discussed. As well as definitions, the lots of availabe models for the diffusion coefficient in terms of porosities are compared. Also, the constrictiviy which explains the effect of cross sectional area change over the diffusion path was discussed.

  • PDF

Multi-level Vector Error Diffusion for Smear Artifact Reduction in the Boundary Regions (경계 영역에서 색 번짐 감소를 위한 멀티레벨 벡터 오차 확산법)

  • 박태용;조양호;김윤태;하영호
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.461-464
    • /
    • 2003
  • This paper proposes the multi-level vector error diffusion for smear artifact reduction in the boundary regions. Smear artifact mainly results from a large accumulation of quantization error. Accordingly, to reduce these artifacts, the proposed method excludes the large quantization error in the error diffusion process by comparing the magnitude of the error vector with predetermined first threshold. In addition, if the vector norm of the difference between the error adjusted input vector and the primary co]or that has minimum vector norm for the error adjusted input vector is larger than second threshold, the error is excluded. As a result, the proposed method reduce smear artifact in the boundary region and produces visually pleasing halftone pattern.

  • PDF

Development of Process Technology for Low Pressure Vaccum Carburizing (저압식 진공 침탄(LPC) 열처리 공정 기술 개발)

  • Dong, Sang-Keun;Yang, Jae-Bok
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.231-237
    • /
    • 2004
  • Vacuum carburizing continues to gain acceptance as an alternative to atmosphere carburizing particularly in the car industry. The advantages of low-pressure carburization over atmospheric gas carburization is not only the creation of a surface entirely free of oxide and the environmentally friendly nature of these methods but also an improvement in deformation behaviour achieved by combining carburization with gas quenching, a reduction in batch times by increasing the carburization temperature, low gas and energy consumption and the prevention of soot to a large extent. In present study, an improved vacuum carburizing method is provided which is effective to deposit carbon in the surface of materials and to reduce cycle time. Also LPC process simulator was made to optimize to process controls parameters such as pulse/pause cycles of pressure pattern, temperature, carburizing time, diffusion time. The carburizing process was simulated by a diffusion calculation program, where as the model parameters are proposed with help the experimental results and allows the control of the carburizing process with good accordance to the practical results. Thus it can be concluded that LPC process control method based on the theoretical simulation and experimental datas appears to provide a reasonable tool for prototype LPC system.

  • PDF

MOLTEN SALT VAPORIZATION DURING ELECTROLYTIC REDUCTION

  • Hur, Jin-Mok;Jeong, Sang-Moon;Lee, Han-Soo
    • Nuclear Engineering and Technology
    • /
    • v.42 no.1
    • /
    • pp.73-78
    • /
    • 2010
  • The suppression of molten salt vaporization is one of the key technical issues in the electrolytic reduction process developed for recycling spent nuclear fuel from light-water reactors Since the Hertz-Langmuir relation previously applied to molten salt vaporization is valid only for vaporization into a vacuum, a diffusion model was derived to quantitatively assess the vaporization of LiCl, $Li_2O$ and Li from an electrolytic reducer operating under atmospheric pressure. Vaporization rates as a function of operation variables were calculated and shown to be in reasonable agreement with the experimental data obtained from thermogravimetry.