• Title/Summary/Keyword: reduction of energy oil use

Search Result 36, Processing Time 0.034 seconds

A Study on Design of Optimal Location for Renewable Energy Facility Using GIS (GIS를 사용한 재생에너지설비 최적 위치 설계에 관한 연구)

  • Jung, Moon-Seon;Moon, Chae-Joo;Chang, Young-Hak;Kim, Young-Gon;Lee, Sook-Hee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.2
    • /
    • pp.357-368
    • /
    • 2018
  • For well over 100 years, oil has enabled remote communities to generate electricity and enjoy the benefits of a consistent electrical supply. Relying solely on oil for electricity generation has left island and remote communities exposed to several risks and drawbacks. Oil-based electricity generation is often more expensive and subject to price volatility, which can result in the use of risky fuel hedging strategies. The residents of islands and remote communities express concern over the future impacts of climate change or insist on their opinions for the corresponding action with reduction of carbon emissions. These risks and drawbacks can be overcomed with continuing cost reductions in solar, wind, and energy storage technologies by maker. Reducing costs is not always a straightforward process, relying on more diversely and renewably arranged renewable energy sources led to reduced local construction cost in every situation reviewed in this study. In this paper, a convenient and simple design solution which will facilitate the optimum location and transmission route of renewable energy facility using GIS(Geographic Information System) is proposed. The suggested solutions exercised to the case of geomoon island using GIS and identified by local site survey.

A Study on the Effective Utilization Plan through Field Investigation and Analysis with Power Transformers in Domestic Areas

  • Shin, Heung-Sik;Lee, Jae-Cheon;Bai, Seok-Myung;Kim, Seon-Gu;Kim, Jin-Tae;Kim, Gi-Hyeon;Jeong, Jong-Wook;Bang, Seon-Bae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.4
    • /
    • pp.88-95
    • /
    • 2007
  • Korea is highly dependent on foreign countries for energy while at the same time having a high energy-consumption industrial structure. Therefore, logical improvements in energy use efficiency and nationwide energy saving are becoming more and more important in coping with the worldwidehigh oil prices and environmental issues such as listed in the Kyoto Protocol to the United Nations Framework Convention on Climate Change. Consequently, a study was conducted on the average annual load factor in domestic areas to set a reasonable and reliable technology standard plan for high-efficiency transformers. The average annual load factor in Korea was discovered to be 18.4[%] classified by industry. This factor is expected to be used in arranging a domestic standard for a minimum efficiency system for transformers, and in reviewing and supplementing the standard transformers plan for the High Energy-Efficiency Appliance Certification. The expected effect from the establishment of the technology standards plan for highly efficient transformers is the expansion of the manufacturing and distribution of highly efficient transformers that are suitable for domestic use. These will lead to electricity cost savings for users, strengthening the related industries' market competitive powers and the effective reduction of greenhouse gases on a national level by drastically reducing loss from transformers, which accounts for a large portion of the total electric supply losses.

In vitro Screening of Essential Oil Active Compounds for Manipulation of Rumen Fermentation and Methane Mitigation

  • Joch, M.;Cermak, L.;Hakl, J.;Hucko, B.;Duskova, D.;Marounek, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.7
    • /
    • pp.952-959
    • /
    • 2016
  • The objective of this study was to investigate the effects of 11 active compounds of essential oils (ACEO) on rumen fermentation characteristics and methane production. Two trials were conducted. In trial 1, ACEO (eugenol, carvacrol, citral, limonene, 1,4-cineole, p-cymene, linalool, bornyl acetate, ${\alpha}$-pinene, and ${\beta}$-pinene) at a dose of $1,000{\mu}L/L$ were incubated for 24 h in diluted rumen fluid with a 70:30 forage:concentrate substrate (16.2% crude protein; 36.6% neutral detergent fiber). Three fistulated Holstein cows were used as donors of rumen fluid. The reduction in methane production was observed with nine ACEO (up to 86% reduction) compared with the control (p<0.05). Among these, only limonene, 1,4-cineole, bornyl acetate, and ${\alpha}$-pinene did not inhibit volatile fatty acid (VFA) production, and only bornyl acetate produced less methane per mol of VFA compared with the control (p<0.05). In a subsequent trial, the effects on rumen fermentation and methane production of two concentrations (500 and $2,000{\mu}L/L$) of bornyl acetate, the most promising ACEO from the first trial, were evaluated using the same in vitro incubation method that was used in the first trial. In trial 2, monensin was used as a positive control. Both doses of bornyl acetate decreased (p<0.05) methane production and did not inhibit VFA production. Positive effects of bornyl acetate on methane and VFA production were more pronounced than the effects of monensin. These results confirm the ability of bornyl acetate to decrease methane production, which may help to improve the efficiency of energy use in the rumen.

The Present and the Future of Biogas Purification and Upgrading Technologies (바이오가스 정제 및 고질화 기술 현황 및 전망)

  • Heo, Namhyo;Park, Jaekyu;Kim, Kidong;Oh, Youngsam;Cho, Byounghak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.172-172
    • /
    • 2011
  • Anaerobic digestion(AD) has successfully been used for many applications that have conclusively demonstrated its ability to recycle biogenic wastes. AD has been successfully applied in industrial waste water treatment, stabilsation of sewage sludge, landfill management and recycling of biowaste and agricultural wastes as manure, energy crops. During AD, i.e. organic materials are decomposed by anaerobic forming bacteria and fina1ly converted to excellent fertilizer and biogas which is primarily composed of methane(CH4) and carbon dioxide(CO2) with smaller amounts of hydrogen sulfide(H2S) and ammonia(NH3), trace gases such as hydrogen(H2), nitrogen(N2), carbon monoxide(CO), oxygen(O2) and contain dust particles and siloxanes. The production and utilisation of biogas has several environmental advantages such as i)a renewable energy source, ii)reduction the release of methane to the atomsphere, iii)use as a substitute for fossil fuels. In utilisation of biogas, most of biogas produced from small scale plant e.g. farm-scale AD plant are used to provide as energy source for cooking and lighting, in most of the industrialised countries for energy recovery, environmental and safety reasons are used in combined heat and power(CHP) engines or as a supplement to natural. In particular, biogas to use as vehicle fuel or for grid injection there different biogas treatment steps are necessary, it is important to have a high energy content in biogas with biogas purification and upgrading. The energy content of biogas is in direct proportion to the methane content and by removing trace gases and carbon dioxide in the purification and upgrading process the energy content of biogas in increased. The process of purification and upgrading biogas generates new possibilities for its use since it can then replace natural gas, which is used extensively in many countries, However, those technologies add to the costs of biogas production. It is important to have an optimized purification and upgrading process in terms of low energy consumption and high efficiency giving high methane content in the upgraded gas. A number of technologies for purification and upgrading of biogas have been developed to use as a vehicle fuel or grid injection during the passed twenty years, and several technologies exist today and they are continually being improved. The biomethane which is produced from the purification and the upgrading process of biogas has gained increased attention due to rising oil and natural gas prices and increasing targets for renewable fuel quotes in many countries. New plants are continually being built and the number of biomethane plants was around 100 in 2009.

  • PDF

Bioenergy Crop Production and Research Trends (바이오에너지 원료작물 생산 및 연구동향)

  • Kim, Kwang-Soo;Kim, Young-Bum;Jang, Young-Seok;Bang, Jin-Ki
    • Journal of Plant Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.103-109
    • /
    • 2007
  • The increasing industrialization of the world has led to precipitous rise for the demand of petroleum-based fuels. The world is presently confronted with the twin crises of fossil fuel depletion and environmental pollution. The search for alternative fuels, which promise a harmonious correlation with sustainable development, energy conservation, efficiency and environmental preservation, has become highly pronounced in the present. Bioenergy is playing an increasingly important role as an alternative and renewable source of energy. Use of Bioenergy has several potential environmental advantages. The most important perhaps is reduction in life cycle greenhouse gases emissions relatives petroleum fuels, since bioenergy is derived from plants which convert Carbon dioxide ($CO_{2}$) into Carbohydrates in their growth. Bioenergy includes solid biomass, biomas and liquid bio-fuels which are fuels derived from crop plants, and include biomass that's directly burned. The two most important bio liquid fuels today are bioethanol from fermenting grain, grass, straw or wood, and biodiesel from plant seed oil.

Study of Oil Palm Biomass Resources (Part 4) Study of Pelletization of Torrefied Oil Palm Biomass - (오일팜 바이오매스의 자원화 연구 IV - 반탄화된 오일팜 바이오매스의 펠릿 성형 특성 연구 -)

  • Sung, Yong Joo;Kim, Chul-Hwan;Lee, Ji-Young;Cho, Hu-Seung;Nam, Hye-Gyeong;Park, Hyeong-Hun;Kwon, Sol;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.1
    • /
    • pp.24-34
    • /
    • 2015
  • Domestic companies supplying electricity must increase obligatory duty to use renewable energy annually. If not met with obligatory allotment, the electricity-supply companies must pay RPS (Renewable Portfolio Standards) penalty. Although the power plants using a pulverizing coal firing boiler could co-fire up to around 3 per cent with wood pellets mixed in with coal feedstock without any major equipment revamps, they recorded only about 60 per cent fulfillment of RPS. Consequently, USD 46 million of RPS penalty was imposed on the six power supplying subsidiaries of GENCOs in 2014. One of the solutions to reduce the RPS penalty is that the power supply companies adopt the co-firing of torrefied lignocellulosic biomass in coal plants, which may contribute to the use of over 30 per cent of torrefied biomass mixed with bituminous coals. Extra binder was required to form pellets using torrefied biomass such as wood chips, PKS (Palm Kernel Shell) and EFB (Empty Fruit Bunch). Instead of corn starch, 30, 50 and 70 per cent of Larix saw dusts were respectively added to the torrefied feedstocks such as Pinus densiflora chips, PKS and EFB. The addition of saw dusts led to the decrease of the calorific values of the pellets but the forming ability of the pelletizer was exceedingly improved. Another advantage from the addition of saw dusts stemmed from the reduction of ash contents of the pellets. Finally, it was confirmed that torrefied oil palm biomass such as PKS and EFB could be valuable feedstocks in making pellets through improved binding ability.

Development of CO2 Emission Factors for Alternative Fuels with Assessment of Emission Reduction in Cement Industry (시멘트산업의 CO2 배출계수 개발 및 대체연료 사용에 의한 온실가스 저감량 산정 연구)

  • Yoon, Seok-Kyung;Myeong, Soo-Jeong;Jang, Tae-Hyeog;Kim, Jin-Su;Lee, See-Hyung;Kim, Ki-Hyun;Jeon, Eui-Chan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.2
    • /
    • pp.189-195
    • /
    • 2008
  • We developed emission factors for alternative fuels used in cement industries in Korea and also estimated reduction in emissions of greenhouse gas (GHG) by the use of alternative fuels. Emission factors for GHG of waste tire, waste plastic, waste oil and RDF were estimated to be about 89, 78, 77 and 95 ton $CO_2$/TJ respectively. When compared with previous studies, most of the results showed similar trends. The calorific value estimation and elemental analysis for energy source were implemented in order to estimate the exact emission factors and the reduction of GHG emissions using alternative fuel. In the case of 'A' company, $CO_2$ emission from alternative fuels was about 4% lower than that of bituminous coal only. Also in case of company 'B', $CO_2$ emission from alternative fuels was about 1.4% lower than that of only bituminous coal. In Germany and Japan, alternative fuel is not regarded to be fuel consumption in cement industry. When applying this rule, the emission reductions were about 4.3% for company 'A' and 6.3% for company 'B'. The results of this study may be considered as a useful information for developing strategies in reducing GHG emissions.

Water-Splitting and Highly Active Catalysts Technology for CO2 Reduction (물 분해와 CO2 환원을 위한 고활성 촉매기술)

  • Chung, Pyung Jin
    • Journal of Energy Engineering
    • /
    • v.26 no.3
    • /
    • pp.30-50
    • /
    • 2017
  • Currently, exhaust gas emitted from thermal power plants and various combustion facilities that consume large amounts of fossil fuels such as coal, oil, and natural gas contains high concentrations of $CO_2$ and is a major cause of global warming. Conventionally, as a countermeasure against this problem, research and development are being carried out from various fields, and it is considered to be one of the most promising methods for separating and recovering $CO_2$ in the exhaust gas. One of the reasons for the low use of carbon dioxide is oxidized among the carbon compounds and is present in the most stable state. From the viewpoint of $CO_2$ emissions, $CO_2$ immobilization technology, which converts $CO_2$ into chemically useful compounds, is considered to be more important.

Design of Wind Turbines for Reducing Interference to Radar Signals (레이더 신호 간섭의 최소화를 위한 풍력 발전기 설계)

  • Park, Kang-Kook;Chin, Hui-Cheol;Kim, Kyung-Tae;Kim, Hyo-Tae;Kim, Jin-Bong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.4
    • /
    • pp.533-540
    • /
    • 2012
  • The use of wind energy is gaining importance because of its many advantages. Nations worldwide are promoting the installation of wind farms to produce electricity in an attempt to tackle climate change and increasing oil costs. But, wind turbines can generate undesired signals which disturb the performance of military radar systems. Because the current generation of on and off-shore three bladed wind turbines have radar signatures consistent with their very large physical size. So this study considers the options available for the reduction of wind turbine radar signature and presents solutions for each of the main external turbine components. The radar signature reduction approaches are based on existing technologies developed for aerospaces stealth applications. However, the realization of these for the purposes of reduction wind turbine radar signatures is a novel development, particularly in the solutions proposed. This paper is presented techniques which reduce radar signatures of wind turbine. We know that radar signatures of wind turbine reduce by using these techniques.

Study on Energy Performance And Economic Evaluation of Windows System with Built-in Type Blinds (블라인드 내장형 창호시스템의 에너지 성능 및 경제성 평가에 관한 연구)

  • Joe, Won-Hwa;Lim, Nam-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.2
    • /
    • pp.97-104
    • /
    • 2010
  • This study evaluated the energy efficiency of a windows system using built-in blinds, with regard to their insulation performance and their blocking of solar radiation. The study took advantage of the "Physibel Voltra" program as a physical simulation of heat transfer. To simulate the "Physibel Voltra" program, I practiced a mock-up test to determine heating quality and translation condition. I analyzed the propensity to annual energy consumption, the annual quantity of heat transfer, and the annual cooling and heating cost through a computer simulation for one general household in an apartment building. In the test, it was found that compared to a general windows system, a windows system with built-in blinds reduced the annual heat transfer by 10% in cooling states and by 11% in heating states when the blind was up. When the blind was down, the windows system with built-in blinds reduced the annual heat transfer by 25% in cooling states and 30% in heating states. When a windows system with built-in blinds is compared with a general windows system, the quantity of cooling and heating loads is reduced by 283.3kw in cooling states and 76.3kw in heating states. This leads to a reduction in the required cooling and heating energy of 359.6kw per house. It is thus judged that the use of a windows system with built-in blinds is advantageous in terms of reducing greenhouse gas emissions, because the annual TOE (tons of oil equivalent) per house is reduced by 0.078TOE, while $tCO_2$ is reduced by $0.16tCO_2$. In addition, compared with a general windows system, the cost of cooling and heating loads in the system reduces the annual cooling cost by 100,000won, and the annual heating cost by 50,000won. Ultimately, this means that cooling and heating loads are cut by 150,000won per year.