• Title/Summary/Keyword: reduction factor.

Search Result 3,092, Processing Time 0.029 seconds

Evaluation of Patient Radiation Doses Using DAP Meter in Interventional Radiology Procedures (인터벤션 시술 시 면적선량계를 이용한 환자 방사선 선량 평가)

  • Kang, Byung-Sam;Yoon, Yong-Su
    • Journal of radiological science and technology
    • /
    • v.40 no.1
    • /
    • pp.27-34
    • /
    • 2017
  • The author investigated interventional radiology patient doses in several other countries, assessed accuracy of DAP meters embedded in intervention equipments in domestic country, conducted measurement of patient doses for 13 major interventional procedures with use of Dose Area Product(DAP) meters from 23 hospitals in Korea, and referred to 8,415 cases of domestic data related to interventional procedures by radiation exposure after evaluation the actual effectives of dose reduction variables through phantom test. Finally, dose reference level for major interventional procedures was suggested. In this study, guidelines for patient doses were $237.7Gy{\cdot}cm^2$ in TACE, $17.3Gy{\cdot}cm^2$ in AVF, $114.1Gy{\cdot}cm^2$ in LE PTA & STENT, $188.5Gy{\cdot}cm^2$ in TFCA, $383.5Gy{\cdot}cm^2$ in Aneurysm Coil, $64.6Gy{\cdot}cm^2$ in PTBD, $64.6Gy{\cdot}cm^2$ in Biliary Stent, $22.4Gy{\cdot}cm^2$ in PCN, $4.3Gy{\cdot}cm^2$ in Hickman, $2.8Gy{\cdot}cm^2$ in Chemo-port, $4.4Gy{\cdot}cm^2$ in Perm-Cather, $17.1Gy{\cdot}cm^2$ in PCD, and $357.9Gy{\cdot}cm^2$ in Vis, EMB. Dose referenece level acquired in this study is considered to be able to use as minimal guidelines for reducing patient dose in the interventional radiology procedures. For the changes and advances of materials and development of equipments and procedures in the interventional radiology procedures, further studies and monitorings are needed on dose reference level Korean DAP dose conversion factor for the domestic procedures.

A Study on Calculation of Air Pollutant Emissions from ships at Incheon Port and the Effects of Eco-Friendly Policies (인천항 선박 대기오염물질 배출량 산정 및 친환경 정책 효과에 대한 연구)

  • Lee, Jungwook;Lee, Hyangsook
    • Journal of Korea Port Economic Association
    • /
    • v.38 no.1
    • /
    • pp.129-142
    • /
    • 2022
  • In the past, interest in air pollution was concentrated on greenhouse gases, but in recent years, interest in fine dust has been increasing. The media and environmental organizations continue to emphasize air pollution caused by fine dust. The awareness of fine dust is increasing, and air pollution generated at ports is analyzed to be serious as a domestic factor excluding foreign inflows. Recognizing this, in order to reduce air pollution generated at ports, special laws on improving air quality, such as port areas, have been enacted in Korea, and attempts are being made to curb air pollution caused by ports. In this law, it is a policy that regulates air pollutants generated not only by ships but also throughout ports such as vehicles and unloading machines, and representative are ECA, VSR, and AMP. This study attempted to analyze the effects of these eco-friendly policies at Incheon Port. First of all, a study was conducted to calculate emissions assuming that there was no policy, analyze each policy, and finally calculate and compare actual emissions reflecting all policies. The methodology presented by the European Environmental Administration and the U.S. Environmental Protection Agency was used, and pollutants to be analyzed were analyzed for sulfur oxides (SOX), carbon monoxide (CO), nitrogen oxides (NOX), total floating substances (TSP), fine dust and ultrafine dust (PM10, PM2.5) and ammonia (NH3). As a result of the analysis, it was analyzed that the actual emission reflecting all policies was about 4,097 tons/year, which had an emission reduction effect of about 760 tons/year compared to about 4,857 tons/year when the policy was not reflected. When the effects of each policy were analyzed individually, it was found that ECA 4,111 tons/year, VSR 4,854 tons/year, and AMP 4,843 tons of air pollutant emissions occurred The results of this study can be used as basic data and evidence for policy establishment related to the atmospheric environment at Incheon Port.

Analysis of the operation status and opinion on the improvement of fishing vessel structure in coastal improved stow net fishery by the questionnaire survey (설문조사를 통한 연안개량안강망어업의 조업 실태 및 어선 구조 개선에 관한 의견 분석)

  • CHANG, Ho-Young;KIM, Min-Son;HWANG, Bo-Kyu;OH, Jong Chul
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.57 no.4
    • /
    • pp.316-333
    • /
    • 2021
  • In order to understand basic data for improving the fishing system and fishing vessel structure in coastal improved stow net fishery, a questionnaire survey and on-site hearing were conducted from May 10 to June 11, 2019 to analyze opinions on the improvement of operation status and fishing vessel structure. The questionnaire survey consisted of ten questions on the operation status of coastal improved stow net fishery and six questions on the improvement of fishing vessel structure, and the results of each question were analyzed by the region, the captain's age, the captain's career and the age of fishing vessel. As a result of analyzing opinions on the operation status of the coastal improved stow net fishery, it was found that the average time required for casting net was 32.8 to 33.0 minutes and that the average time required for hauling net was 41.0 to 42.2 minutes which took 10 to 12 minutes more than for casting net. The most important work requiring improvement during fishing operation (the first priority) were 'hauling net operation,' 'readjustment and storage of fishing gear,' and 'fish handling' and the hardest factor in fishing management were in the order of 'reduction of catch,' 'labor shortage' and 'rising labor costs.' The most institutional improvement that is most needed in coastal improved stow net fishery was an 'using fine mesh nets.' Most of the respondent to the questions on the experience in hiring foreign crews was 'either hiring or willing to hire foreign crews,' and the average number of foreign crews employed was found to be 2.3 to 2.4 persons. The most important reason for hiring (or considering employment) foreign crews was 'high labor costs.' The degree of communication with foreign crews during fishing operation were 'moderate' or 'difficult to direct work.' The most important problem in hiring foreign crews (the first priority) was an 'illegal departure.' As the survey results on the opinion of structural improvement of coastal improved stow net fishing vessel, the degree of satisfaction with fishing vessel structure related to fishing operation was found to be somewhat unsatisfactory, with an average of 3.3 points on a five-point scale. The inconvenient structure of fishing vessel in possession (the first priority), the space needed most for the construction of new fishing vessel (the first priority) and the space considered important for the construction of new fishing vessel (the first prioprity) was a 'fish warehouse.' The most preferred equipment for the construction of new fishing vessel were 'engine operation monitoring' and 'navigation safety devices.' The average size (tonnage class), the average horse power and the average total length of fishing vessel for proper profit and safety fishing operation was between 13.8 and 14.0 tonnes, 808.3 to 819.5 H.P. and 23.4 to 23.5 meters, respectively. The results of the operation status of coastal improved stow net fishery and the requirement for improving the fishing vessel structure are expected to be provided as basic data for reference when we build or improve the fishing vessel.

Correlation Analysis between the Factors Associated with Osteoporosis and the Fat Infiltration Rate of the Multifidus and Erector Spinae Muscles in Osteoporotic Vertebral Compression Fracture Patients (골다공증성 척추 압박 골절 환자에서 다열근과 척추기립근의 지방 침투율과 골다공증 관련 인자의 상관 관계 분석)

  • Jun, Deuk Soo;Baik, Jong-Min;Choi, Ji Uk
    • Journal of the Korean Orthopaedic Association
    • /
    • v.55 no.4
    • /
    • pp.318-323
    • /
    • 2020
  • Purpose: To examine the relationship between total fat infiltration (TFI) rate, which quantifies the reduction of muscles around the spine and is an important factor for sarcopenia, and the factors affecting osteoporotic vertebral compression fracture. Materials and Methods: Patients treated for osteoporotic compression fractures of the lumber spine from January 2012 to December 2016 were analyzed retrospectively. Among them, this study included ninety-eight patients who were 1) diagnosed with osteoporosis with a bone mineral density (BMD) T score of less than 2.5 g/cm2, 2) received vertebroplasty or kyphoplasty for lumbar fractures, 3) involved one segment of the lumbar spine, and 4) were followed-up for more than one year. The TFI rate confirmed by analyzing magnetic resonance imagings with the Image J program was studied. Based on this, the relationship between the TFI of the multifidus and erector spinae muscles and the factors of osteoporosis were analyzed. Results: The mean TFI of the multifidus and erector spinae was 14.66±10.16. The spine BMD showed a positive correlation with the hip BMD, but a negative correlation with the TFI. A positive correlation was observed between the hip BMD and body mass index. In addition, vitamin D was positively correlated with both the hip and spine BMD but negatively correlated with the TFI rate. Conclusion: Muscle growth helps treat osteoporosis, and can prevent fractures that occur frequently in osteoporosis patients. Increasing the vitamin intake can also slow the progression of muscle atrophy.

Next Generation Lightweight Structural Composite Materials for Future Mobility Review: Applicability of Self-Reinforced Composites (미래모빌리티를 위한 차세대 경량구조복합재료 검토: 자기강화복합재료의 적용 가능성)

  • Mi Na Kim;Ji-un Jang;Hyeseong Lee;Myung Jun Oh;Seong Yun Kim
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.1-15
    • /
    • 2023
  • Demand for energy consumption reduction is increasing according to the development expectations of future mobility. Lightweight structural materials are known as a method to reduce greenhouse gas emissions and improve energy efficiency. In particular, fiber reinforced polymer composite (FRP) is attracting attention as a material that can replace existing metal alloys due to its excellent mechanical properties and light weight. In this paper, industrial applications and research trends of carbon fiber reinforced composites (CFRP, carbon FRP) and self-reinforced composites (SRC) were reviewed based on the reinforcement, polymer matrix, and manufacturing process. In order to overcome the expensive process cost and long manufacturing time of the epoxy resin-based autoclave method, which is mainly used in the aircraft field, mass production of CFRP-applied electric vehicles has been reported using a high-pressure resin transfer molding process including fast-curing epoxy. In addition, thermoplastic resin-based CFRP and interface enhancement methods to solve the recycling issue of carbon fiber composites were reviewed in terms of materials and processes. To form a perfect matrix-reinforcement interface, which is known as the major factor inducing the excellent mechanical properties of FRP, studies on SRC impregnated with the same matrix in polymer fibers have been reported. The physical and mechanical properties of SRC based on various thermoplastic polymers were reviewed in terms of polymer orientation and composite structure. In addition, a copolymer matrix strategy for extending the processing window of highly drawn polypropylene fiber-based SRC was discussed. The application of CFRP and SRC as lightweight structural materials can provide potential options for improving the energy efficiency of future mobility.

Evaluation of Economic-Environmental Impact of Heat Exchanger Network in Naphtha Cracking Center (납사분해 공정 내 열 교환 네트워크 경제적-환경영향 평가)

  • Hyojin Jung;Subin Jung;Yuchan Ahn
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.378-387
    • /
    • 2023
  • Petrochemical is an energy consuming industry that consumes about 30% of total industrial energy consumption and is a representative carbon dioxide (CO2) emission source. Among them, the Naphtha Cracking Center (NCC), which produces ethylene, propylene, propane and mixed C4, consumes large amounts of energy and emits significant amounts of CO2. For this reason, an integrated techno economic- environmental impact assessment aimed at reducing energy consumption and environmental impact factors is necessary to ensure efficiency in terms of economics and environment. This study aims to analyze the efficiency of the heat exchanger network used in the existing NCC base on the pinch analysis and select an improvement plan that can reduced energy consumption. In order to reduces the utility consumption in the process, an optimal heat exchanger network considering the high-temperature and low-temperature stream was derived, and the economic evaluation was conducted by considering the trade-off between the reduction in utility consumption and the increase in heat exchanger installation cost. In addition, an environmental impact assessment was conducted on the reduced CO2 emission in consideration of the environmental aspect, and the economic environmental impact assessment used the payback period to recover the invested funds to come up with an energy saving plan that can be applied based on the actual process. As a result of considering the economic-environmental impact assessment, when the environmental impact assessment was not considered, it was 4.29 months, 3.21 months, and 3.39 months for each case, and when considering the environmental impact assessment, it was 4.24 months, 3.17 months, and 3.35 months for each case. These results appeared equally both when the environmental impact assessment was not include and when it was include. In addition, a sensitivity analysis was conducted for each case to determine how important factors affect the payback period. As a result of the sensitivity analysis, the cost of the heat exchanger was identified as a major factor influencing the overall cost.

Effects of Change in Patient Position on Radiation Dose to Surrounding Organs During Chest Lateral Radiography with Auto Exposure Control Mode (자동노출제어장치를 적용한 흉부 측면 방사선검사 시 환자 위치 변화가 주변 장기의 선량에 미치는 영향)

  • Seung-Uk Kim;Cheong-Hwan Lim;Young-Cheol Joo;Sin-Young Yu
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.903-909
    • /
    • 2023
  • The purpose of this study is to compare and analyze the effect of changes in the patient's central position on the exposure dose and image quality of surrounding organs during a chest lateral examination using an Auto Exposure Control(AEC). The experiment was conducted on a human body phantom. A needle was attached to the lower part of the center of the coronal plane of the phantom, and a lead ruler was attached to the lower part of the detector so that the 50 cm point was located at the lower center of the AEC ion chamber. The exposure conditions were 125 kVp, 320 mA, the distance between the source and the image receptor was 180 cm, and the exposure field size was 14 × 17 inches. Only one AEC ion chamber was used at the bottom center, and the density was set to '0' and sensitivity to 'Middle', and the central X-ray was incident vertically toward the 6th thoracic vertebra. With AEC mode applied, the 50 cm point of the needle and lead ruler were aligned and the phantom was moved 5 cm toward the stomach (F5) and 5 cm toward the back (B5), and the dose factor was analyzed by measuring ESD. The ESD of the thyroid gland according to the change in patient center position was 232.60±2.20 μGy for Center, 231.22±1.53 μGy for F5, and 184.37±1.19 μGy for B5, and the ESD of the breast was 288.54±3.03 μGy for Center, F5 was 260.97±1.93 μGy, B5 was 229.80±1.62 μGy, and the ESD of the center of the lung was 337.02±3.25 μGy for Center, F5 was 336.09±2.29 μGy, and B5 was 261.76±1.68 μGy. As a result of comparing the average values of dose factors between each group, the difference in average values was statistically significant (p<0.01), and each group appeared to be independent. As a result of the study, there was no significant difference in the dose to the thyroid, breast, and center of the lung according to the change in the patient's central position, except for the breast (10%) when the patient moved forward about 5 cm. However, movement of about 5 cm posteriorly resulted in an average dose reduction of 23.7%. Additionally, when the patient's central position was moved to the rear, image quality deteriorated.

Effects of the Type of Exchanged Ions and Carbon Precursors on Methane Adsorption Behavior in Zeolite Templated Carbons Synthesized Using Various Ion-Exchanged Faujasite Zeolites (이온교환된 Faujasite 제올라이트를 이용한 제올라이트 주형 탄소체 합성 시 이온 교환 금속과 탄소 전구체가 메탄 흡착 거동에 미치는 영향)

  • Ki Jun Kim;Churl-hee Cho;Dong-Woo Cho
    • Clean Technology
    • /
    • v.30 no.2
    • /
    • pp.123-133
    • /
    • 2024
  • Zeolite template carbon (ZTC) was synthesized as an adsorbent to remove low-concentration CH4 from the atmosphere. The synthesis of ZTC was performed using CH4 and C2H2 as carbon precursors and their impact on adsorption was investigated. ZTC was also synthesized using Y zeolite ion-exchanged with CaCl2 and LiCl as templates to investigate the effect of using metals in ion exchange. The comparison of the carbon precursors revealed that C2H2 had a higher carbon yield than CH4. The synthesized ZTC exhibited developed micropores due to carbon deposition deep inside the micropores of the zeolite template. The kinetic diameter of C2H2 (0.33 nm) is smaller than that of CH4 (0.38 nm), which allowed for its deposition. The study compared metal precursors used for ion exchange and confirmed that the CaCl2-based ZTC developed more micropores compared to the LiCl-based ZTC. The ion-exchanged Ca inhibited pore blocking by the carbon precursor, allowing it to enter the pores. The ability of synthesized ZTC to adsorb N2 and CH4 at 298 K was investigated. The results showed that CH4 had a higher overall adsorption amount than N2. The sample synthesized using C2H2 and CaY exhibited the highest N2 and CH4 adsorption capacity. However, the sample synthesized with CH4 had the highest CH4/N2 gas uptake ratio, which is a crucial factor in designing an adsorption process. The observed difference was likely caused by the underdevelopment of ultrafine pores that are associated with N2 adsorption. This resulted in a reduction of N2 adsorption, leading to an increase in CH4/N2 separation.

L-AHG-mediated Suppression of M1 Polarization and Pro-inflammatory Signaling Pathways in LPS-stimulated RAW264.7 Macrophages (LPS에 의해 자극된 RAW264.7 대식세포에서 L-AHG에 의한 M1 분극화 및 친염증 신호 경로의 억제)

  • Won Young Jang;Shin Young Park;Ki Youn Kim;Do Youn Jun;Young-Seuk Bae;Young Ho Kim
    • Journal of Life Science
    • /
    • v.34 no.7
    • /
    • pp.443-452
    • /
    • 2024
  • This study aimed to examine the influence of 3,6-anhydroxygalactose (L-AHG) on the pro-inflammatory M1 polarization and pro-inflammatory responses observed in the RAW264.7 mouse macrophage cell line following stimulation with lipopolysaccharides (LPS). L-AHG exhibited a significant and dose-dependent inhibition of inducible nitric oxide synthase (iNOS) expression, a hallmark of M1 polarization, and subsequent NO production in LPS-stimulated RAW264.7 cells. Furthermore, the LPS-induced upregulation of cyclooxygenase-2 (COX-2), which drives the production of prostaglandin E2, an inflammatory mediator, was also inhibited by L-AHG. L-AHG did not affect the LPS-triggered Toll-like receptor 4 (TLR4)-mediated pro-inflammatory signaling pathway, which culminated in the activation of transforming growth factor-β-activated kinase 1 (TAK1). However, it was observed to inhibit the generation of reactive oxugen species (ROS) in a dose-dependent manner, as well as the TAK1-driven activation of JNK and p38 MAPK. Given that the active p38 MAPK is known to contribute to the assembly of active nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, which catalyzes the intracellular generation of pro-inflammatory ROS in LPS-stimulated macrophages, the dose-dependent reduction in the LPS-induced ROS generation by L-AHG may be mainly due to the prevention of TAK1-driven activation of p38 MAPK. Together, these results demonstrate that the L-AHG-mediated inhibition of the TAK1-JNK/p38 MAPK activation phase of the pro-inflammatory signaling pathway in LPS-stimulated RAW264.7 cells by L-AHG represents a promising mechanism for suppressing M1 polarization and pro-inflammatory responses in macrophages.

The Association of Dual Job on Dental Hygienists' Job Satisfaction (치과위생사의 직무만족도와 동시일자리(부업)의 관련성)

  • Mi-Sook Yoon;Go-eun Kim;Han-A Cho
    • Journal of Korean Dental Hygiene Science
    • /
    • v.6 no.2
    • /
    • pp.51-64
    • /
    • 2023
  • Background: This study was conducted to determine the association with dual jobbing on dental hygienists' job satisfaction and to identify the factors that lead to dual jobs. Methods: This study was an online survey of 110 currently employed dental hygienists conducted during the month of May 2022. To determine job satisfaction, we used the 20-item Korea-Minnesota Satisfaction Questionnaire (K-MSQ). Survey questions related to dual job were adapted and supplemented from the dual job survey instrument for dental hygienists to identify intention to dual job and future intention to dual job. Descriptive statistics, independent t-test, ANOVA and Scheffe's post hoc analysis, and multiple logistic regression were performed. Results: The dual job rate and future dual job rate of the participants in this study were about 27% and 47%, respectively. The means for Intrinsic job satisfaction, Extrinsic job satisfaction, and job satisfaction were 3.44, 3.15, and 3.36, respectively. It was statistically significant that extrinsic job satisfaction increased with increasing position, and intrinsic job satisfaction, extrinsic job satisfaction, and job satisfaction increased with increasing salary. Those currently working dual jobs cited "self-actualization" as a reason for doing so, and those who intended to work dual jobs in the future cited "not being paid enough in their primary job" as a reason. We found that a one-unit increase in intrinsic job satisfaction and job satisfaction increases the odds of future intention to dual job by about 1.07 and 1.05 times, respectively (p<0.05). Conclusion: This study confirmed the influence of dental hygienists' job satisfaction on intention to dual job and future intention to dual job, and self-actualization was found to be the main factor. Therefore, the consideration of dual jobs in the future will affect the improvement of dental hygienists as professionals and the reduction of turnover through better working conditions.