• Title/Summary/Keyword: reduction factor

Search Result 3,091, Processing Time 0.034 seconds

Experimental study of noise level optimization in brain single-photon emission computed tomography images using non-local means approach with various reconstruction methods

  • Seong-Hyeon Kang;Seungwan Lee;Youngjin Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1527-1532
    • /
    • 2023
  • The noise reduction algorithm using the non-local means (NLM) approach is very efficient in nuclear medicine imaging. In this study, the applicability of the NLM noise reduction algorithm in single-photon emission computed tomography (SPECT) images with a brain phantom and the optimization of the NLM algorithm by changing the smoothing factors according to various reconstruction methods are investigated. Brain phantom images were reconstructed using filtered back projection (FBP) and ordered subset expectation maximization (OSEM). The smoothing factor of the NLM noise reduction algorithm determined the optimal coefficient of variation (COV) and contrast-to-noise ratio (CNR) results at a value of 0.020 in the FBP and OSEM reconstruction methods. We confirmed that the FBP- and OSEM-based SPECT images using the algorithm applied with the optimal smoothing factor improved the COV and CNR by 66.94% and 8.00% on average, respectively, compared to those of the original image. In conclusion, an optimized smoothing factor was derived from the NLM approach-based algorithm in brain SPECT images and may be applicable to various nuclear medicine imaging techniques in the future.

A Study on Change of Safety Factor according to Slope Analysis Method using Strength Parameters and Slope Change (강도 정수와 경사도 변화를 활용한 비탈면 해석기법에 따른 안전율 변화에 관한 연구)

  • Moon, Hyojong;Shim, Jeonghoon;Jeong, Jisu;Lee, Seungho
    • The Journal of Engineering Geology
    • /
    • v.27 no.1
    • /
    • pp.31-40
    • /
    • 2017
  • The slope stability analysis by the limit equilibrium method has the disadvantage that it can be applied only when the analysis is performed by setting the critical plane after analyzing the active surface many times and the soil is uniform and only the safety factor can be calculated. However, the analysis using the strength reduction analysis method has advantages that the engineer can judge various aspects and calculate the safety factor. In this study, the safety factor according to the change of slope and shear strength was compared and analyzed using limit equilibrium analysis and strength reduction method. It is suggested that it is desirable to use the strength reduction method which can synthetically review the stress, displacement, and strain in the soil.

A Study on Harmonic Reduction of Single-phase UPS with Variable Passive Harmonic Filters (가변형 수동 고조파 필터에 의한 단상 무정전전원장치의 고조파 저감에 관한 연구)

  • Kim, Sung-Sam;Hwang, Seon-Hwan
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.495-501
    • /
    • 2019
  • This paper proposes a variable passive harmonic filter for reduction and improvement of harmonics and power factor of single-phase uninterruptible power supply(UPS) with full bridge rectifier. Recently, UPSs have excellent harmonic and power factor operation characteristics by applying 2-level or more levels of power conversion methods. On the other hand, the single-phase UPS of the full bridge rectifier seriously causes the third, fifth, and seventh harmonics, and the power factor reduction on the grid side. Therefore, we present a variable passive harmonic filter for eliminating (2n+1) order harmonics and improving the power factor generated by the full bridge rectifier operation. In order to evaluate the performance of the proposed variable harmonic filter, the its validity is verified by various simulations and experiments.

A dimensional reduction method in cluster analysis for multidimensional data: principal component analysis and factor analysis comparison (다차원 데이터의 군집분석을 위한 차원축소 방법: 주성분분석 및 요인분석 비교)

  • Hong, Jun-Ho;Oh, Min-Ji;Cho, Yong-Been;Lee, Kyung-Hee;Cho, Wan-Sup
    • The Journal of Bigdata
    • /
    • v.5 no.2
    • /
    • pp.135-143
    • /
    • 2020
  • This paper proposes a pre-processing method and a dimensional reduction method in the analysis of shopping carts where there are many correlations between variables when dividing the types of consumers in the agri-food consumer panel data. Cluster analysis is a widely used method for dividing observational objects into several clusters in multivariate data. However, cluster analysis through dimensional reduction may be more effective when several variables are related. In this paper, the food consumption data surveyed of 1,987 households was clustered using the K-means method, and 17 variables were re-selected to divide it into the clusters. Principal component analysis and factor analysis were compared as the solution for multicollinearity problems and as the way to reduce dimensions for clustering. In this study, both principal component analysis and factor analysis reduced the dataset into two dimensions. Although the principal component analysis divided the dataset into three clusters, it did not seem that the difference among the characteristics of the cluster appeared well. However, the characteristics of the clusters in the consumption pattern were well distinguished under the factor analysis method.

Soil structure interaction effects on structural parameters for stiffness degrading systems built on soft soil sites

  • Aydemir, Muberra Eser
    • Structural Engineering and Mechanics
    • /
    • v.45 no.5
    • /
    • pp.655-676
    • /
    • 2013
  • In this study, strength reduction factors and inelastic displacement ratios are investigated for SDOF systems with period range of 0.1-3.0 s considering soil structure interaction for earthquake motions recorded on soft soil. The effect of stiffness degradation on strength reduction factors and inelastic displacement ratios is investigated. The modified-Clough model is used to represent structures that exhibit significant stiffness degradation when subjected to reverse cyclic loading and the elastoplastic model is used to represent non-degrading structures. The effect of negative strain - hardening on the inelastic displacement and strength of structures is also investigated. Soil structure interacting systems are modeled and analyzed with effective period, effective damping and effective ductility values differing from fixed-base case. For inelastic time history analyses, Newmark method for step by step time integration was adapted in an in-house computer program. New equations are proposed for strength reduction factor and inelastic displacement ratio of interacting system as a function of structural period($\tilde{T}$, T) ductility (${\mu}$) and period lengthening ratio ($\tilde{T}$/T).

Feed-through Noise Reduction Technique for MEMS Gyroscope (MEMS Gyroscope를 위한 feed-through 노이즈 제거 기법)

  • Park, Kyung-Jin;Kang, Seong-Mook;Baek, Chang-Wook;Kim, Ho-Seong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2247-2252
    • /
    • 2009
  • Since the dimensions of MEMS gyroscope are very small compared to those of conventional gyroscope, MEMS gyroscope should be able to measure charge of pico-coulomb caused by very small change of electrodes gap. However, feed-through signal from driving electrodes to the sensing electrodes due to the electromagnetic coupling is much greater than the sensing signal, which degrades the sensitivity of MEMS gyroscope. This paper introduces the feed-through noise canceling technique using dummy port and confirms the feasibility of feed-through noise canceling experimentally. Experimental results shows that, when driving signal is 6 Vpp, 30 kHz, feed-through signal of vacuum packaged Si Gyroscope decreases from -53.2 dBm to -77.1 dBm by using feed-through reduction technique. Q-factor that could not be measured without noise reduction is measured to be about 2500 and resonance frequency to be 7.018 kHz.

EFMDR-Fast: An Application of Empirical Fuzzy Multifactor Dimensionality Reduction for Fast Execution

  • Leem, Sangseob;Park, Taesung
    • Genomics & Informatics
    • /
    • v.16 no.4
    • /
    • pp.37.1-37.3
    • /
    • 2018
  • Gene-gene interaction is a key factor for explaining missing heritability. Many methods have been proposed to identify gene-gene interactions. Multifactor dimensionality reduction (MDR) is a well-known method for the detection of gene-gene interactions by reduction from genotypes of single-nucleotide polymorphism combinations to a binary variable with a value of high risk or low risk. This method has been widely expanded to own a specific objective. Among those expansions, fuzzy-MDR uses the fuzzy set theory for the membership of high risk or low risk and increases the detection rates of gene-gene interactions. Fuzzy-MDR is expanded by a maximum likelihood estimator as a new membership function in empirical fuzzy MDR (EFMDR). However, EFMDR is relatively slow, because it is implemented by R script language. Therefore, in this study, we implemented EFMDR using RCPP ($c^{{+}{+}}$ package) for faster executions. Our implementation for faster EFMDR, called EMMDR-Fast, is about 800 times faster than EFMDR written by R script only.

Recommendations of Environmental Reduction Factor of FRP Rebar for Durability Design of Concrete Structure (콘크리트 보강용 FRP 보강근의 내구성 설계를 위한 환경영향계수의 제안)

  • Park Chan-Gi;Won Jong-Pil;Kang Joo-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.529-539
    • /
    • 2004
  • The corrosion of steel rebars has been the major cause of reinforced concrete deterioration. FRP(Fiber-reinforced polymer) rebar has emerged as one of the most promising and affordable solutions to the corrosion problems of steel reinforcement in structural concrete. However, FRP rebar is prone to deteriorate due to other degradation mechanisms than those for steel. The high alkalinity of concrete, for instance, is a possible degradation source. Therefore, the USA, Japan, Canada, UK. etc are using environmental reduction factor. Although difference design guidelines were drawn in many, including USA, Japan, Canada, UK etc, recommendations and coefficients that could take into account the long-term behavior of FRP reinforcement were not well defined. This study focuses on recommendation of environmental reduction factor of FRP rebar. Environment reduction factor were decided using durability test result. FRP rebars were subjected to twelve type of exposure conditions including alkaline solution, acid solution, salt solution and deionized water etc. The water absorption behavior was observed by means of simple gravimetric measurements and durability properties were investigated by performing tensile, compressive and short beam tests. Based on the experimental result, environmental reduction factor of hybrid FRP rebar(A), and (C) and CFRP rebar was decided as 0.85. Also, hybrid FRP rebar(B) and GFRP rebar were decided as 0.7 for the environmental reduction factor

Imposed Weighting Factor Optimization Method for Torque Ripple Reduction of IM Fed by Indirect Matrix Converter with Predictive Control Algorithm

  • Uddin, Muslem;Mekhilef, Saad;Rivera, Marco;Rodriguez, Jose
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.227-242
    • /
    • 2015
  • This paper proposes a weighting factor optimization method in predictive control algorithm for torque ripple reduction in an induction motor fed by an indirect matrix converter (IMC). In this paper, the torque ripple behavior is analyzed to validate the proposed weighting factor optimization method in the predictive control platform and shows the effectiveness of the system. Therefore, an optimization method is adopted here to calculate the optimum weighting factor corresponds to minimum torque ripple and is compared with the results of conventional weighting factor based predictive control algorithm. The predictive control algorithm selects the optimum switching state that minimizes a cost function based on optimized weighting factor to actuate the indirect matrix converter. The conventional and introduced weighting factor optimization method in predictive control algorithm are validated through simulations and experimental validation in DS1104 R&D controller platform and show the potential control, tracking of variables with their respective references and consequently reduces the torque ripple.

Evaluation of Installation Damage Factor for Geogrid using Maximum Particle Size of Backfill Material (뒤채움 최대입도를 이용한 지오그리드 보강재의 시공손상계수 산정 방법)

  • Kim, Kyung-Suk;Choi, Young-Chul;Kim, Tae-Soo;Lim, Seoung-Yoon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.4
    • /
    • pp.29-37
    • /
    • 2007
  • Reduction Factor for Installation Damage required for calculation of design strength of geogrid used in MSEW(mechanically stabilized earth wall) design is usually obtained in the field test simulating real construction condition. However, damages occurred in geogrid during backfill work are influenced by many factors such as polymer types, unit weight per area, backfill construction method and gradation of backfill material and field test considering these factors demands lots of time and costs. In this study, factors affecting installation damage are analyzed and empirical method for evaluating reduction factor for installation damage using maximum particle size in backfill material is suggested.

  • PDF