• Title/Summary/Keyword: reduced-salt

Search Result 572, Processing Time 0.028 seconds

Goat Meat Does Not Cause Increased Blood Pressure

  • Sunagawa, Katsunori;Kishi, Tetsuya;Nagai, Ayako;Matsumura, Yuka;Nagamine, Itsuki;Uechi, Shuntoku
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.1
    • /
    • pp.101-114
    • /
    • 2014
  • While there are persistent rumors that the consumption of goat meat dishes increases blood pressure, there is no scientific evidence to support this. Two experiments were conducted to clarify whether or not blood pressure increases in conjunction with the consumption of goat meat dishes. In experiment 1, 24 Dahl/Iwai rats (15 weeks old, body weight $309.3{\pm}11.1$ g) were evenly separated into 4 groups. The control group (CP) was fed a diet containing 20% chicken and 0.3% salt on a dry matter basis. The goat meat group (GM) was fed a diet containing 20% goat meat and 0.3% salt. The goat meat/salt group (GS) was fed a diet containing 20% goat meant and 3% to 4% salt. The Okinawan mugwort (Artemisia Princeps Pampan)/salt group (GY) was fed a diet containing 20% goat meat, 3% to 4% salt and 5% of freeze-dried mugwort powder. The experiment 1 ran for a period of 14 weeks during which time the blood pressure of the animals was recorded. The GS, and GY groups consumed significantly more water (p<0.01) than the CP and GM groups despite the fact that their diet consumption levels were similar. The body weight of animals in the CP, GM, and GS groups was similar while the animals in the GY group were significantly smaller (p<0.01). The blood pressure in the GM group was virtually the same as the CP group throughout the course of the experiment. In contrast, while the blood pressure of the animals in the GS and GY group from 15 to 19 weeks old was the same as the CP group, their blood pressures were significantly higher (p<0.01) after 20 weeks of age. The GY group tended to have lower blood pressure than the GS group. In experiment 2, in order to clarify whether or not the increase in blood pressure in the GS group and the GY group in experiment 1 was caused by an excessive intake of salt, the effects on blood pressure of a reduction of salt in diet were investigated. When amount of salt in the diet of the GS and GY group was reduced from 4% to 0.3%, the animal's blood pressure returned to normotensive. These results indicate that, as in the case of chicken consumption, prolonged consumption of goat meat does not cause increased blood pressure, rather the large amount of salt used in the preparation of goat meat dishes is responsible for the increase in blood pressure.

Salt tolerant rice cv Nona Bokra chromosome segments introgressed into cv Koshihikari improved its yield under salinity through retained grain filling

  • Mitsuya, Shiro;Murakami, Norifumi;Sato, Tadashi;Kano-Nakata, Mana;Yamauchi, Akira
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.238-238
    • /
    • 2017
  • Salt stress is one of the deteriorating abiotic stresses due to the climate change, which causes over-accumulation of $Na^+$ and $Cl^-$ ions in plants and inhibits the growth and yield of rice especially in coastal Southeastern Asia. The yield components of rice plant (panicle number, spikelet number per panicle, 1000-grain weight, % of ripened grains) that are majorly affected by salt stress vary with growth stages at which the plant is subjected to the stress. In addition, the salt sensitivity of each yield component differs among rice varieties even when the salt-affected growth stage was same, which indicates that the physiological mechanism to maintain each yield component is different from each other. Therefore, we hypothesized that rice plant has different genes/QTLs that contribute to the maintenance of each yield component. Using a Japanese leading rice cultivar, Koshihikari, and salt-tolerant Nona bokra's chromosome segment substitution lines (CSSLs) with the genetic background of Koshihikari (44 lines in total) (Takai et al. 2007), we screened higher yielding CSSLs under salinity in comparison to Koshihikari and identified the yield components that were improved by the introgression of chromosome segment(s) of Nona bokra. The experiment was conducted in a salinized paddy field. One-month-old seedlings were transplanted into a paddy field without salinity. These were allowed to establish for one month, and then the field was salinized by introducing saline water to maintain the surface water at 0.4% salinity until harvest. The experiments were done twice in 2015 and 2016. Although all the CSSLs and Koshihikari decreased their yield under salinity, some CSSLs showed relatively higher yield compared with Koshihikari. In Koshihikari, all the yield components except panicle number were decreased by salinity and % of ripened grains was mostly reduced, followed by spikelet number per panicle and 1000-grain weight. When compared with Koshihikari, keeping a higher % of ripened grains under salinity attributed to the significantly greater yield in one CSSL. This indicated that the % of ripened grains is the most sensitive to salt stress among the yield components of Koshihikari and that the Nona bokra chromosome segments that maintained it contributed to increased yield under salt stress. In addition, growth analyses showed that maintaining relative growth rate in the late grain filling stage led to the increased yield under salt stress but not in earlier stages.

  • PDF

Antifouling Paint Resin Based on Polyurethane Matrix with Quaternary Ammonium Salt (Quaternary Ammonium Salt를 도입한 방오도료용 폴리우레탄 수지)

  • Kim, Dae-Hee;Jung, Min-Yeong;Park, Hyun;Lee, In-Won;Chun, Ho-Hwan;Jo, Nam-Ju
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.122-129
    • /
    • 2015
  • Recently, the development of a new class of anti-fouling paint resin which has excellent anti-fouling performance and no persistence in the marine ecology is necessary. In this study, we first polymerized polyurethanes (PUs) as the other type of matrix which have carboxylic acid groups by using poly(ethylene glycol) (PEG), 4,4'-diphenylmethane diisocyanate (MDI), and 2,2'-bis(hydroxyl methyl)-propionic acid (DMPA). And next, we synthesized final resins having quaternary ammonium salts on pendant acid groups of PUs. After synthesis, the physical self-polishing property of resin by the measurement of reduced thickness in sea water was tested. The mechanical property of antifouling paint resin was good when the molecular weight of PEG was 600 or less. It was confirmed that the adhesion of PU resin was deteriorated when the content of quaternary ammonium salt was incorporated over specific value.

Effects of Salt Concentration in Soybean Sauce on the Physicochemical Properties of Pre-rigor Ground Hanwoo Muscle

  • Kim, Hyun-Wook;Choi, Ji-Hun;Choi, Yun-Sang;Kim, Hack-Youn;Han, Doo-Jeong;Kim, Tae-Hyun;Lee, Sung-Ki;Kim, Cheon-Jei
    • Food Science of Animal Resources
    • /
    • v.31 no.3
    • /
    • pp.389-397
    • /
    • 2011
  • This study was conducted to examine the effect of salt concentration in soybean sauce (ganjang) on pre-rigor ground Hanwoo (Korean native cattle) muscle. Although adding soybean sauce reduced pH of pre-rigor Hanwoo muscle, it improved the water holding capacity (WHC), cooking loss, total protein solubility, myofibrillar fragmentation index (MFI), 2-thiobar-bituric acid (TBA) values, and textural properties by increasing salt concentration in the soybean sauce. In particular, adding soybean sauce inhibited lipid oxidation despite increasing salt concentration. An increased salt concentration in the soybean sauce in pre-rigor Hanwoo muscle tended to make the meat have lower lightness and higher redness and yellowness values. Although soybean sauce had a significantly lower pre-rigor salting effect than sodium chloride in terms of cooking loss and total protein solubility (p<0.05), soybean sauce improved myofibrillar fragmentation and lipid oxidation when compared with sodium chloride. Furthermore, no significant differences in textural properties were observed between adding soybean sauce and sodium chloride at the same salt concentrations. Therefore, soybean sauce can be a functional curing material for pre-rigor muscle.

Studies on the Salt - tolerance of Lawn Grasses in Sand Culture (사경에 의한 잔디류의 내염성에 관한 연구)

  • 홍종운
    • Asian Journal of Turfgrass Science
    • /
    • v.2 no.1
    • /
    • pp.5-30
    • /
    • 1988
  • The object of this experiments was to know the salt tolerance of Fults and other lawn grasses. Fults, Olympic (Tall fescue, Festuca arundinacea Schred), Ceeping red fescue, Kentucky bluegrass and Zoysia grass (Z. japonica S.) were grown in hydroponics with vermiculite at various concentrations of NaCl. Hoagland's solution was used as the basic solution (control), and the concentrations of Cl to it were 1000, 2000, 3000, 4000 and l5OOOppm, respectively. Each was cultivated under the circumstances during 2 months. The results obtained are summarized as follows: 1.The growth of Fults, Olympic, Creeping red fescue and others were better at Cl lOOOppm than control. In the 5OOOppm application, Fescues become worse and 23.9% of them were withered. In concentration of Cl above 9OOOppm, it was impossible to live. 2.In the l0000~l1000ppm application, Olympic and Kentucky bluegrass were become worse and most of them died. 3.Fults were almost possible to live in the below of 9OOOppm, but they began to die in the above of 10000 ppm. 4.With the increasing concentration of Cl, plants were dwarfed and the number of stems, leaves and roots were reduced, but it was especially observed that the number of stolons of Creeping red fescue were increased at 1000~4000ppm. 5.Fults grass was the most salt tolerant turfgrass, but was impossible to live at salt level of about 36 millimhos (Exchange NaCI conductivity-ppm). Among the grasses, according to salt tolerance, they were arranged as follows. Fults > Zoysia japonica S. > Ky belugrass > Olympic grass > Creeping red fescue 6.The number of leaves, stems, tillers, and dry weight of Olympic grass, Fults and others were increased more at Cl 1OOOppm application than control, but in the above 4OOOppm application, those of plants were decreased. 7.The productivity of all grasses under the experiments was increased at 3.l75millimhos (Exchange NaCi conductivity ppm) in the concentration of Cl. The each dry-weight of Olympic, Creeping red fescue, Kentucky bluegrass and Zoysia grass was decreased at 8.85millimhos, and the weight of Fults grass was also decreased remarkably at 12.20millimhos. 8.As the result of this experiments, most plants grow normally at low concentration of NaCI-l000ppm. That seems to stimulate more the grasses to grow than non-salt.

  • PDF

Screening and Identification of Salt Tolerant Peanut (Arachis hypogaea L) Genotypes under Salinity Stress

  • Rizwana B.Syed Nabi;Eunyoung Oh;Myoung Hee Lee;Sungup Kim;Kwang-Soo Cho;Jeongeun Lee;Jung In Kim;Eunsoo Lee;Min Young Kim;Sang Woo Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.113-113
    • /
    • 2022
  • Salinity in surface waters is increasing around the world. Many factors, including increased water extraction, poor irrigation management, and sea-level rise, contribute to this change, and posing a threat to plant development and agricultural production. Seeds exposed to high salinity, have a lower probability of germinating and various physiological and biochemical effects. Salinity stress affects more than 20% of agricultural land and about 50% of irrigated land. In the current study, our objective is to identify the salt-tolerant peanut (Arachis hypogaea L.) Korean genotypes under salinity stress. Thus, two-week-old 19 diverse peanut Korean genotypes were exposed to 10 days of salinity (150 mM NaCl) stress. Based on the growth attributes investigation, Baekjung and Ahwon genotypes showed significantly higher shoot lengths compared to control plants. Whereas, the Sinpalwang genotype exhibited a significantly positive response for plant growth and reduced wilting symptoms compared to other genotypes. This study was able to find out peanut tolerant and sensitive genotypes for salt stress. These results may provide a good template for further salt-tolerant peanut cultivar improvement programs. Identified diverse salt-responsive genotypes can be utilized as source material in Korean breeding schemes for peanut crop improvement for salt and other abiotic stress tolerance.

  • PDF

Effects of Addition Level and Chemical Type of Propionate Precursors in Dicarboxylic Acid Pathway on Fermentation Characteristics and Methane Production by Rumen Microbes In vitro

  • Li, X.Z.;Yan, C.G.;Choi, S.H.;Long, R.J.;Jin, G.L.;Song, Man K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.1
    • /
    • pp.82-89
    • /
    • 2009
  • Two in vitro experiments were conducted to examine the effects of propionate precursors in the dicarboxylic acid pathway on ruminal fermentatation characteristics, $CH_4$ production and degradation of feed by rumen microbes. Fumarate or malate as sodium salts (Exp. 1) or acid type (Exp. 2) were added to the culture solution (150 ml, 50% strained rumen fluid and 50% artificial saliva) to achieve final concentrations of 0, 8, 16 and 24 mM, and incubated anaerobically for 0, 1, 3, 6, 9 and 12 h at $39^{\circ}C$. For both experiments, two grams of feed consisting of 70% concentrate and 30% ground alfalfa (DM basis) were prepared in a nylon bag, and were placed in a bottle containing the culture solution. Addition of fumarate or malate in both sodium salt and acid form increased (p<0.0001) pH of culture solution at 3, 6, 9 and 12 h incubations. The pH (p<0.0001) and total volatile fatty acids (VFA, p<0.05) were enhanced by these precursors as sodium salt at 3, 6 and 9 h incubations, and pH (p<0.001) and total VFA (p<0.01) from fumarate or malate in acid form were enhanced at a late stage of fermentation (9 h and 12 h) as the addition level increased. pH was higher (p<0.001) for fumarate than for malate as sodium salt at 3 h and 6 h incubations. Propionate ($C_3$) proportion was increased (p<0.0001) but those of $C_2$ (p<0.05) and $C_4$ (p<0.01 - p<0.001) were reduced by the addition of sodium salt precursors from 3 h to 12 incubation times while both precursors in acid form enhanced (p<0.011 - p<0.0001) proportion of $C_3$ from 6h but reduced (p<0.018 - p<0.0005) $C_4$ proportion at incubation times of 1, 3, 9 and 12 h. Proportion of $C_3$ was increased (p<0.05 - p<0.0001) at all incubation times by both precursors as sodium salt while that of $C_3$ was increased (p<0.001) from 6h but $C_4$ proportion was decreased by both precursors in acid form as the addition level increased. Proportion of $C_3$ was higher (p<0.01 - p<0.001) for fumarate than malate as sodium salt from 6 h incubation but was higher for malate than fumarate in acid form at 9 h (p<0.05) and 12 h (p<0.01) incubation times. Increased levels (16 and 24 mM) of fumarate or malate as sodium salt (p<0.017) and both precursors in acid form (p<0.028) increased the total gas production, but no differences were found between precursors in both chemical types. Propionate precursors in both chemical types clearly reduced (p<0.0001 - p<0.0002) $CH_4$ production, and the reduction (p<0.001 - p<0.0001) was dose dependent as the addition level of precursors increased. The $CH_4$ generated was smaller (p<0.01 - p<0.0001) for fumarate than for malate in both chemical types. Addition of fumarate or malate as sodium type reduced (p<0.004) dry matter degradation while both precursors in both chemical types slightly increased neutral detergent fiber degradability of feed in the nylon bag.

Study on the Eating Habits and Practicability of Guidelines for Reducing Sodium Intake according to the Stage of Change in Housewives (주부의 나트륨 저감화 행동변화 단계에 따른 식행동 특성 분석 및 저나트륨 식사 방법의 실천용이도에 관한 연구)

  • Ahn, So-Hyun;Kwon, Jong-Sook;Kim, Kyungmin;Yoon, Jin-Sook;Kang, Baeg-Won;Kim, Jong Wook;Heo, Seok;Cho, Hea-Young;Kim, Hye-Kyeong
    • Korean Journal of Community Nutrition
    • /
    • v.17 no.6
    • /
    • pp.724-736
    • /
    • 2012
  • This study was intended to investigate the sodium-related perception, dietary behavior, and practicability of methods for reducing sodium intake(RSI) according to the stage of change in consumers. The survey was conducted to 770 housewives, among them 553 subjects who answered the key questions for the stage of change were categorized into 'Maintenance (M)' stage (maintaining reduced salt intake for more than 6 months; n = 287, 51.90%), 'Action (A)' stage (maintaining reduced salt intake for less than 6 months; n=139, 25.14%), and 'Pre-Action (P)' stage (not starting reduced salt intake; n = 127, 22.97%). The subjects in M and A were significantly older than those in P (p < 0.01). The scores of desirable dietary habit and dietary balance were the highest in M followed by A and P. When eating out, the subjects in P considered 'price' more and 'healthiness of food' less than those in M and A did. Among the guidelines for RSI, 'Avoid Processed Foods', 'Eat enough vegetables and fruits' and 'Add little amount of dipping sauce for fried food' were selected as the three easiest items to perform. With regard to the sodium-related perception, the subjects in M considered eating-out food to be more salty than homemade dishes, read nutrition labels more, avoided table salt or dipping sauce for fried food more, and had 'own low-sodium recipe' than those in P (p < 0.001). It is suggested that practicability of actions for RSI and the stage of change should be considered to develop effective personalized education program and nutrition guidance.

Some Factors Affecting Germination and Growth of Echinochloa colona (Echinochloa colona의 발아(發芽) 및 생장(生長)에 미치는 제요인(諸要因))

  • Chun, J.C.;Moody, K.
    • Korean Journal of Weed Science
    • /
    • v.5 no.2
    • /
    • pp.103-108
    • /
    • 1985
  • A series of experiments were conducted to determine the effect of pH, salinity, seeding depth, and moisture stress on the germination and growth of Echinochloa colons (L.) Link. Germination significantly decreased at pH 10, but shoot lengths were not affected by the pH tested. Germination was not affected by salt concentrations of up to 0.1%, but was significantly reduced at 0.5%. A 1.0% salt concentration did not significantly reduce shoot length. Increase in seeding depth significantly reduced emergence. Irrespective of seeding depth, the coleoptilar node was always just below the soil surface. Delayed and decreased germination was obtained at -4.6 bars of simulated water potential, while no germination occurred at -9.8 bars. Soil moisture stress significantly reduced plant height, delayed panicle initiation, and reduced seed production.

  • PDF