• 제목/요약/키워드: redshift

검색결과 393건 처리시간 0.033초

Galaxy overdensities at intermediate to high redshift

  • 강유진;임명신
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.52.2-52.2
    • /
    • 2011
  • We searched and studied galaxy overdensities at 0.6 < z < 4.5 in the areas of two GOODS fields. These overdensities are identified by running top-hat filters on the two dimensional spatial distribution of two galaxy samples - a K-band limited, photometric redshift sample at 0.6 < z < 4.5, and BVz-color selected sample targeting overdensities at z ~ 3.7 and z ~ 4.0. Here photometric redshifts are derived from multi-wavelength data ranging from U-band through 8 micron band of the Spitzer. We find 52 overdensities with significances of 3.5-7 ${\sigma}$. The derived masses found to be a > $10^{13}\;M_{\odot}$ with the comoving number density of a few ${\times}10^{-6}\;Mpc^{-3}$ at z ~ 3. In order to understand the high number density of massive overdensities at high redshift, we carried out an analysis of galaxy overdensities using the mock galaxy catalog based on Millennium simulation selected in the same way as the analysis of the observational data. In the simulation, we find 650 galaxy overdensities with a 3.5 ${\sigma}$ detection threshold over $2^{{\circ}2}$ sky field. The number density of the very massive overdensities (M > $10^{14}\;M_{\odot}$) in simulation shows a similar trend with the observation. We further discuss implications of our results.

  • PDF

A Y-BAND LOOK OF THE SKY WITH 1-M CLASS TELESCOPES

  • Choi, Chang-Su;Im, Myung-Shin;Jeon, Yi-Seul;Ibrahimov, Mansur
    • 천문학회지
    • /
    • 제45권1호
    • /
    • pp.7-17
    • /
    • 2012
  • Y-band is a broad passband that is centered at ~1 ${\mu}m$. It is becoming a new, popular window for extragalactic study especially for observations of red objects thanks to recent CCD technology developments. In order to better understand the general characteristics of objects in Y-band, and to investigate the promise of Y-band observations with small telescopes, we carried out imaging observations of several extragalactic fields, brown dwarfs, and high redshift quasars with Y-band filter at the Mt. Lemmon Optical Astronomy Observatory and the Maidanak observatory. From our observations, we constrain the bright end of the galaxy and the stellar number counts in Y-band. We also test the usefulness of high redshift quasar (z >6) selection via i - z - Y color-color diagram, to demonstrate that the i - z - Y color-color diagram is effective for the selection of high redshift quasars even with a conventional optical CCD camera installed at a 1-m class telescope.

THE QUASAR LUMINOSITY FUNCTION OF THE MILLIQUAS, MASTER AND 2QZ QUASAR CATALOGS

  • MOHAMMADI, TALIEH;BIDGOLI, SEPEHR ARBABI
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.461-462
    • /
    • 2015
  • Quasars are among the farthest and brightest objects known in the universe. Because quasars are mostly observed in the redshift range between 1 and 3, they can be used to study large scale structure in the universe, and its evolution over the past billion years. An important issue is the evolution of the quasar luminosity function, which has been investigated for relative small samples of the 2QZ catalog. Here we extend the study to 3 quasar samples, the most recent data of the Milliquas, Master and 2QZ quasar catalogs to determine the luminosity function of quasars and its evolution, using the Standard cosmological ${\Lambda}CDM$ model with ${\Omega}_{\Lambda}=0.73$, ${\Omega}_M=0.27$, and $H_0=70kms^{-1}Mpc^{-1}$. For the purpose of this analysis we initially used 0.25-mag bins and approximately 0.180-redshift bins, then calculated the comoving distance and comoving volume for each bin of redshift and calculated the number of objects in each bin per unit volume, in order to find the number density per absolute magnitude bin. Our analysis on the basis of these new and much more complete datasets is largely in agreement with earlier studies of the luminosity evolution of quasars.

PROBING GALAXY FORMATION MODELS IN COSMOLOGICAL SIMULATIONS WITH OBSERVATIONS OF GALAXY GROUPS

  • HABIB. G., KHOSROSHAHI;GOZALIASL, GHASSEM;FINOGUENOV, ALEXIS;RAOUF, MOJTABA;MIRAGHEE, HALIME
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.349-353
    • /
    • 2015
  • We use multi-wavelength observations of galaxy groups to probe the formation models for galaxy formation in cosmological simulations, statistically. The observations include Chandra and XMM-Newton X-ray observations, optical photometry and radio observations at 1.4 GHz and 610 MHz. Using a large sample of galaxy groups observed by the XMM-Newton X-ray telescope as part of the XMM-Large Scale Survey, we carried out a statistical study of the redshift evolution of the luminosity gap for a well defined mass-selected group sample and show the relative success of some of the semi-analytic models in reproducing the observed properties of galaxy groups up to redshift z ~ 1.2. The observed trend argues in favour of a stronger evolution of the feedback from active galactic nuclei at z < 1 compared to the models. The slope of the relation between the magnitude of the brightest cluster galaxy and the value of the luminosity gap does not evolve with redshift and is well reproduced by the models. We find that the radio power of giant elliptic galaxies residing in galaxy groups with a large luminosity gap are lower compared to giant ellipticals of the same stellar masses but in typical galaxy groups.

Spectroscopic observation of the massive high-z (z=1.48) galaxy cluster SPT-CL J2040-4451 using Gemini Multi-Object Spectrographs

  • Kim, Jinhyub;Jee, Myungkook J.;Kim, Seojin F.;Ko, Jongwan
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.74.2-74.2
    • /
    • 2019
  • Mass measurement of high-redshift galaxy clusters with high accuracy is important in constraining cosmological parameters. Extremely massive clusters at high redshift may impose a serious tension with the current ΛCDM paradigm. SPT-CL J2040-4451 at z=1.48 is considered one such case given its redshift and mass estimate inferred from the SZ data. The system has also been confirmed to be indeed massive from a recent weak-lensing (WL) analysis. Comparison of the WL mass with the spectroscopic result may provide invaluable information on the dynamical stage of the system. However, the existing spectroscopic coverage of the cluster is extremely poor; only 6 blue star-forming galaxies have been found within the virial radius, which results in highly inflated and biased velocity dispersion. In this work, we present a spectroscopic analysis of the member candidates using Gemini Multi-Object Spectrographs (GMOS) observation in Gemini South. The observation was designed to find early-type member galaxies within the virial radius and to obtain reliable velocity dispersion. We explain our selection scheme and preliminary results of the spectra. We also compare the dynamical mass estimate inferred from the velocity dispersion with the WL mass.

  • PDF

The first detection of intracluster light beyond a redshift of 1

  • Ko, Jongwan;Jee, Myungkook J.
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.39.1-39.1
    • /
    • 2019
  • Not all stars in the Universe are gravitationally bounded to galaxies. Since first discovered in 1951, observations have revealed that a significant fraction of stars fills the space between galaxies in local (low-redshift) galaxy clusters, observed as diffuse intracluster light (ICL). Theoretical models provide mechanisms for the production of intracluster stars as tidally stripped material or debris generated through numerous galaxy interactions during the hierarchical growth of the galaxy cluster. These mechanisms predict that most intracluster stars in local galaxy clusters are long-accumulated material since z~1. However, there is no observational evidence to verify this prediction. Here we report observations of abundant ICL for a massive (above $10^{14}$ solar masses) galaxy cluster at a redshift of z=1.24, when the Universe was 5 billion years old. We found that more than 10 per cent of the total light of the cluster is contributed by the diffuse ICL out to 110 kpc from the center of the cluster, comparable to 5-20 per cent in local, massive galaxy cluster. Furthermore, we found that the colour of the brightest cluster galaxy located in the core of the cluster is consistent with that of the ICL out to 200 kpc. Our results demonstrate that the majority of the intracluster stars present in the local Universe, contrary to most previous theoretical and observational studies, were built up during a short period and early (z>1) in the history of the Virgo-like massive galaxy cluster formation, and might be concurrent with the formation of the brightest cluster galaxy.

  • PDF

NEWLY DISCOVERED z ~ 5 QUASARS BASED ON DEEP LEARNING AND BAYESIAN INFORMATION CRITERION

  • Shin, Suhyun;Im, Myungshin;Kim, Yongjung;Jiang, Linhua
    • 천문학회지
    • /
    • 제55권4호
    • /
    • pp.131-138
    • /
    • 2022
  • We report the discovery of four quasars with M1450 ≳ -25.0 mag at z ~ 5 and supermassive black hole mass measurement for one of the quasars. They were selected as promising high-redshift quasar candidates via deep learning and Bayesian information criterion, which are expected to be effective in discriminating quasars from the late-type stars and high-redshift galaxies. The candidates were observed by the Double Spectrograph on the Palomar 200-inch Hale Telescope. They show clear Lyα breaks at about 7000-8000 Å, indicating they are quasars at 4.7 < z < 5.6. For HSC J233107-001014, we measure the mass of its supermassive black hole (SMBH) using its C IV λ1549 emission line. The SMBH mass and Eddington ratio of the quasar are found to be ~108 M and ~0.6, respectively. This suggests that this quasar possibly harbors a fast growing SMBH near the Eddington limit despite its faintness (LBol < 1046 erg s-1). Our 100% quasar identification rate supports high efficiency of our deep learning and Bayesian information criterion selection method, which can be applied to future surveys to increase high-redshift quasar sample.

The clustering of critical points in the evolving cosmic web

  • Shim, Junsup;Codis, Sandrine;Pichon, Christophe;Pogosyan, Dmitri;Cadiou, Corentin
    • 천문학회보
    • /
    • 제46권1호
    • /
    • pp.47.2-47.2
    • /
    • 2021
  • Focusing on both small separations and baryonic acoustic oscillation scales, the cosmic evolution of the clustering properties of peak, void, wall, and filament-type critical points is measured using two-point correlation functions in ΛCDM dark matter simulations as a function of their relative rarity. A qualitative comparison to the corresponding theory for Gaussian random fields allows us to understand the following observed features: (i) the appearance of an exclusion zone at small separation, whose size depends both on rarity and signature (i.e. the number of negative eigenvalues) of the critical points involved; (ii) the amplification of the baryonic acoustic oscillation bump with rarity and its reversal for cross-correlations involving negatively biased critical points; (iii) the orientation-dependent small-separation divergence of the cross-correlations of peaks and filaments (respectively voids and walls) that reflects the relative loci of such points in the filament's (respectively wall's) eigenframe. The (cross-) correlations involving the most non-linear critical points (peaks, voids) display significant variation with redshift, while those involving less non-linear critical points seem mostly insensitive to redshift evolution, which should prove advantageous to model. The ratios of distances to the maxima of the peak-to-wall and peak-to-void over that of the peak-to-filament cross-correlation are ~2-√~2 and ~3-√~3WJ, respectively, which could be interpreted as the cosmic crystal being on average close to a cubic lattice. The insensitivity to redshift evolution suggests that the absolute and relative clustering of critical points could become a topologically robust alternative to standard clustering techniques when analysing upcoming surveys such as Euclid or Large Synoptic Survey Telescope (LSST).

  • PDF

Pure Density Evolution of the Ultraviolet Quasar Luminosity Function at 2 < z < 6

  • Kim, Yongjung;Im, Myungshin
    • 천문학회보
    • /
    • 제46권1호
    • /
    • pp.53.2-53.2
    • /
    • 2021
  • Quasar luminosity function (QLF) shows the active galactic nucleus (AGN) demography as a result of the combination of the growth and the evolution of black holes, galaxies, and dark matter halos along the cosmic time. The recent wide and deep surveys have improved the census of high-redshift quasars, making it possible to construct reliable ultraviolet (UV) QLFs at 2 < z < 6 down to M1450 = -23 mag. By parameterizing these up-to-date observed UV QLFs that are the most extensive in both luminosity and survey area coverage at a given redshift, we show that the UV QLF has a universal shape, and their evolution can be approximated by a pure density evolution (PDE). In order to explain the observed QLF, we construct a model QLF employing the halo mass function, a number of empirical scaling relations, and the Eddington ratio distribution. We also include the outshining of AGN over its host galaxy, which made it possible to reproduce a moderately flat shape of the faint end of the observed QLF (slope of ~ -1.1). This model successfully explains the observed PDE behavior of UV QLF at z > 2, meaning that the QLF evolution at high redshift can be understood under the framework of halo mass function evolution. The importance of the outshining effect in our model also implies that there could be a hidden population of faint AGNs (M1450 > -24 mag), which are buried under their host galaxy light.

  • PDF