Browse > Article
http://dx.doi.org/10.5303/JKAS.2022.55.4.131

NEWLY DISCOVERED z ~ 5 QUASARS BASED ON DEEP LEARNING AND BAYESIAN INFORMATION CRITERION  

Shin, Suhyun (SNU Astronomy Research Center, Astronomy Program, Dept. of Physics & Astronomy, Seoul National University)
Im, Myungshin (SNU Astronomy Research Center, Astronomy Program, Dept. of Physics & Astronomy, Seoul National University)
Kim, Yongjung (Department of Astronomy and Atmospheric Sciences, College of Natural Sciences, Kyungpook National University)
Jiang, Linhua (Kavli Institute for Astronomy and Astrophysics, Peking University)
Publication Information
Journal of The Korean Astronomical Society / v.55, no.4, 2022 , pp. 131-138 More about this Journal
Abstract
We report the discovery of four quasars with M1450 ≳ -25.0 mag at z ~ 5 and supermassive black hole mass measurement for one of the quasars. They were selected as promising high-redshift quasar candidates via deep learning and Bayesian information criterion, which are expected to be effective in discriminating quasars from the late-type stars and high-redshift galaxies. The candidates were observed by the Double Spectrograph on the Palomar 200-inch Hale Telescope. They show clear Lyα breaks at about 7000-8000 Å, indicating they are quasars at 4.7 < z < 5.6. For HSC J233107-001014, we measure the mass of its supermassive black hole (SMBH) using its C IV λ1549 emission line. The SMBH mass and Eddington ratio of the quasar are found to be ~108 M and ~0.6, respectively. This suggests that this quasar possibly harbors a fast growing SMBH near the Eddington limit despite its faintness (LBol < 1046 erg s-1). Our 100% quasar identification rate supports high efficiency of our deep learning and Bayesian information criterion selection method, which can be applied to future surveys to increase high-redshift quasar sample.
Keywords
galaxies: active; galaxies: quasars: general; methods: data analysis; methods: observational; techniques: spectroscopic;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Liddle, A. R. 2007, Information criteria for astrophysical model selection, MNRAS, 377, L74
2 Matsuoka, Y., Iwasawa, K., Onoue, M., et al. 2018, Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). IV. Discovery of 41 Quasars and Luminous Galaxies at 5.7 ≤ z ≤ 6.9, ApJS, 237, 5
3 Matsuoka, Y., Strauss, M. A., Kashikawa, N., et al. 2018, Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). V. Quasar Luminosity Function and Contribution to Cosmic Reionization at z = 6, ApJ, 869, 150
4 Matsuoka, Y., Onoue, M., Kashikawa, N., et al. 2019, Discovery of the First Low-luminosity Quasar at z > 7, ApJL, 872, L2
5 Marziani, P., del Olmo, A., Martinez-Carballo, M. A., et al. 2019, Black hole mass estimates in quasars. A comparative analysis of high- and low-ionization lines, A&A, 627, A88
6 Mazzucchelli, C., Banados, E., Venemans, B. P., et al. 2017, Physical Properties of 15 Quasars at z ≳ 6.5, ApJ, 849, 91
7 Oke, J. B. & Gunn, J. E. 1983, Secondary standard stars for absolute spectrophotometry, ApJ, 266, 713
8 McGreer, I. D., Jiang, L., Fan, X., et al. 2013, The z = 5 Quasar Luminosity Function from SDSS Stripe 82, ApJ, 768, 105
9 McGreer, I. D., Fan, X., Jiang, L., et al. 2018, The Faint End of the z = 5 Quasar Luminosity Function from the CFHTLS, AJ, 155, 131
10 Mortlock, D. J., Warren, S. J., Venemans, B. P., et al. 2011, A luminous quasar at a redshift of z = 7.085, Nature, 474, 616
11 Onoue, M., Kashikawa, N., Matsuoka, Y., et al. 2019, Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). VI. Black Hole Mass Measurements of Six Quasars at 6.1 ≤ z ≤ 6.7, ApJ, 880, 77
12 Paris, I., Petitjean, P., Aubourg, E., et al. 2018, The Sloan Digital Sky Survey Quasar Catalog: Fourteenth data release, A&A, 613, A51
13 Prochaska, J. X., Hennawi, J., Westfall, K., et al. 2020, PypeIt: The Python Spectroscopic Data Reduction Pipeline (v1.3), Zenodo:4323006
14 Prochaska, J., Hennawi, J., Westfall, K., et al. 2020, PypeIt: The Python Spectroscopic Data Reduction Pipeline, The Journal of Open Source Software, 5, 2308
15 Runnoe, J. C., Brotherton, M. S., & Shang, Z. 2012, Updating quasar bolometric luminosity corrections, MNRAS, 422, 478
16 Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds, ApJ, 500, 525
17 Selsing, J., Fynbo, J. P. U., Christensen, L., et al. 2016, An X-Shooter composite of bright 1 < z < 2 quasars from UV to infrared, A&A, 585, A87
18 Shen, Y., Wu, J., Jiang, L., et al. 2019, Gemini GNIRS Near-infrared Spectroscopy of 50 Quasars at z ≳ 5.7, ApJ, 873, 35
19 Niida, M., Nagao, T., Ikeda, H., et al. 2020, The Faint End of the Quasar Luminosity Function at z ~ 5 from the Subaru Hyper Suprime-Cam Survey, ApJ, 904, 89
20 Shin, S., Im, M., Kim, Y., et al. 2020, The Infrared Medium-deep Survey. VII. Faint Quasars at z ~ 5 in the ELAIS-N1 Field, ApJ, 893, 45
21 Sulentic, J. W., del Olmo, A., Marziani, P., et al. 2017, What does CIV λ1549 tell us about the physical driver of the Eigenvector quasar sequence?, A&A, 608, A122
22 Trakhtenbrot, B., Netzer, H., Lira, P., et al. 2011, Black Hole Mass and Growth Rate at z ≃ 4.8: A Short Episode of Fast Growth Followed by Short Duty Cycle Activity, ApJ, 730, 7
23 Trakhtenbrot, B., Volonteri, M., & Natarajan, P. 2017, On the Accretion Rates and Radiative Efficiencies of the Highest-redshift Quasars, ApJL, 836, L1
24 Vestergaard, M. & Peterson, B. M. 2006, Determining Central Black Hole Masses in Distant Active Galaxies and Quasars. II. Improved Optical and UV Scaling Relationships, ApJ, 641, 689
25 Wang, F., Yang, J., Fan, X., et al. 2021, A Luminous Quasar at Redshift 7.642, ApJL, 907, L1
26 Woo, J.-H., Schulze, A., Park, D., et al. 2013, Do Quiescent and Active Galaxies Have Different MBH Relations?, ApJ, 772, 49
27 Yang, J., Wang, F., Fan, X., et al. 2020, Poniua'ena: A Luminous z = 7.5 Quasar Hosting a 1.5 Billion Solar Mass Black Hole, ApJL, 897, L14
28 Allard, F., Homeier, D., Freytag, B., et al. 2013, Progress in modeling very low mass stars, brown dwarfs, and planetary mass objects, Memorie della Societa Astronomica Italiana Supplementi, 24, 128
29 Yang, J., Wang, F., Fan, X., et al. 2020, Measurements of the z ~ 6 Intergalactic Medium Optical Depth and Transmission Spikes Using a New z > 6.3 Quasar Sample, ApJ, 904, 26
30 Zuo, W., Wu, X.-B., Fan, X., et al. 2020, CIV Emission-line Properties and Uncertainties in Black Hole Mass Estimates of z ~ 3.5 Quasars, ApJ, 896, 40
31 Ikeda, H., Nagao, T., Matsuoka, K., et al. 2017, An Optically Faint Quasar Survey at z ~ 5 in the CFHTLS Wide Field: Estimates of the Black Hole Masses and Eddington Ratios, ApJ, 846, 57
32 Coatman, L., Hewett, P. C., Banerji, M., et al. 2017, Correcting CIV-based virial black hole masses, MNRAS, 465, 2120
33 De Rosa, G., Decarli, R., Walter, F., et al. 2011, Evidence for Non-evolving Fe ii/Mg ii Ratios in Rapidly Accreting z ~ 6 QSOs, ApJ, 739, 56
34 Greene, J. E., Strader, J., & Ho, L. C. 2020, Intermediate-Mass Black Holes, ARA&A, 58, 257
35 Kaiser, N., Burgett, W., Chambers, K., et al. 2010, The Pan-STARRS wide-field optical/NIR imaging survey, Proc. SPIE, 7733, 77330E
36 Kim, Y., Im, M., Jeon, Y., et al. 2020, The Infrared Medium-deep Survey. VIII. Quasar Luminosity Function at z ~ 5, ApJ, 904, 111
37 Lusso, E., Worseck, G., Hennawi, J. F., et al. 2015, The first ultraviolet quasar-stacked spectrum at z ≃ 2.4 from WFC3, MNRAS, 449, 4204
38 Inoue, A. K., Shimizu, I., Iwata, I., et al. 2014, An updated analytic model for attenuation by the intergalactic medium, MNRAS, 442, 1805
39 Jiang, L., Fan, X., Vestergaard, M., et al. 2007, Gemini Near-Infrared Spectroscopy of Luminous z ~ 6 Quasars: Chemical Abundances, Black Hole Masses, and Mg II Absorption, AJ, 134, 1150
40 Willott, C. J., Albert, L., Arzoumanian, D., et al. 2010, Eddington-limited Accretion and the Black Hole Mass Function at Redshift 6, AJ, 140, 546
41 Akiyama, M., He, W., Ikeda, H., et al. 2018, The quasar luminosity function at redshift 4 with the Hyper Suprime-Cam Wide Survey, PASJ, 70, S34
42 Coupon, J., Czakon, N., Bosch, J., et al. 2018, The bright-star masks for the HSC-SSP survey, PASJ, 70, S7
43 Shin, S., Im, M., & Kim, Y. 2022, The quasar luminosity function at z ~ 5 via deep learning and Bayesian information criterion, ApJ, in press
44 Shen, Y., Richards, G. T., Strauss, M. A., et al. 2011, A Catalog of Quasar Properties from Sloan Digital Sky Survey Data Release 7, ApJS, 194, 45
45 Reed, S. L., McMahon, R. G., Martini, P., et al. 2017, Eight new luminous z ≥ 6 quasars discovered via SED model fitting of VISTA, WISE and Dark Energy Survey Year 1 observations, MNRAS, 468, 4702
46 Banados, E., Venemans, B. P., Mazzucchelli, C., et al. 2018, An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5, Nature, 553, 473
47 Chaves-Montero, J., Bonoli, S., Salvato, M., et al. 2017, ELDAR, a new method to identify AGN in multi-filter surveys: the ALHAMBRA test case, MNRAS, 472, 2085
48 Foreman-Mackey, D., Hogg, D. W., Lang, D., et al. 2013, emcee: The MCMC Hammer, PASP, 125, 306
49 Dark Energy Survey Collaboration, Abbott, T., Abdalla, F. B., et al. 2016, The Dark Energy Survey: more than dark energy - an overview, MNRAS, 460, 1270
50 Fan, X., Strauss, M. A., Richards, G. T., et al. 2006, Constraining the Evolution of the Ionizing Background and the Epoch of Reionization with z ~ 6 Quasars. II. A Sample of 19 Quasars, AJ, 131, 1203
51 Gwyn, S. D. J. 2012, The Canada-France-Hawaii Telescope Legacy Survey: Stacked Images and Catalogs, AJ, 143, 38
52 Hickox, R. C. & Alexander, D. M. 2018, Obscured Active Galactic Nuclei, ARA&A, 56, 625
53 Jeon, Y., Im, M., Kim, D., et al. 2017, The Infrared Medium-deep Survey. III. Survey of Luminous Quasars at 4.7 ≤ z ≤ 5.4, ApJS, 231, 16
54 Jiang, L., McGreer, I. D., Fan, X., et al. 2016, The Final SDSS High-redshift Quasar Sample of 52 Quasars at z > 5.7, ApJ, 833, 222
55 Jun, H. D., Im, M., Lee, H. M., et al. 2015, Rest-frame Optical Spectra and Black Hole Masses of 3 < z < 6 Quasars, ApJ, 806, 109
56 Kim, Y., Im, M., Jeon, Y., et al. 2019, The Infrared Medium-deep Survey. VI. Discovery of Faint Quasars at z ~ 5 with a Medium-band-based Approach, ApJ, 870, 86
57 Aihara, H., AlSayyad, Y., Ando, M., et al. 2019, Second data release of the Hyper Suprime-Cam Subaru Strategic Program, PASJ, 71, 114
58 Leauthaud, A., Massey, R., Kneib, J.-P., et al. 2007, Weak Gravitational Lensing with COSMOS: Galaxy Selection and Shape Measurements, ApJS, 172, 219
59 Kim, Y., Im, M., Jeon, Y., et al. 2018, The Infrared Medium-deep Survey. IV. The Low Eddington Ratio of A Faint Quasar at z ~ 6: Not Every Supermassive Black Hole is Growing Fast in the Early Universe, ApJ, 855, 138